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Agenda

1. Speech language models

2. Robustness of pipeline
approaches

3. Speaker variation



First,

Let’s review a recent
survey of Speech
Language Models.




The way we speak and write are dikfferent.



The way we speak and write are different.

So he calls me up, and he’s like, ‘1 still love you, and I'm like, I'm
just, | mean, this is exhausting, you know — like we are never
getting back together. Like, ever.

- TAYLOR SWIFT
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So he calls me up, and he’s like, ‘1 still love you, and I'm like, I'm
just, | mean , this is exhausting, you know - like we are never
getting back together. Like, ever.

- TAYLOR SWIFT
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Big picture context is we live in a MULTIMODAL world

o~

LLMs =
Large Language
Models

4LMs =
Speech Language

VLMs =

Vision Language
Models

RLMs =
LLMs for

Recommendation (I made this name
up)

p(text|text)

p(text|speech,text)

p(textjimage,text)

p(text|collaborative-signal,text)

™

And right now people are building models
for all these different types of modalities




SLMs can do tasks that LLMs can’t do

Task Examples of Instructions

Recognize the speech and give me the transcription. (Tang et al., 2024)

Speech recognition Repeat after me in English. (Grattafiori et al., 2024)

Translate the following sentence into English. (Grattafiori et al., 2024)

SRR TRl Recognize the speech, and translate it into English (Chu et al., 2023)

Speaker recognition  How many speakers did you hear in this audio? Who are they? (Tang et al., 2024)

Describe the emotion of the speaker. (Tang et al., 2024)

Protion:recognition Can you identify the emotion? Categorise into: sad, angry, neutral, happy (Das et al., 2024)

What happened to this person? (Wang et al., 2023b)
Question answering  Generate a factual answer to preceding question (Das et al., 2024)
What medicine is mentioned? Briefly introduce that medicine. (Peng et al., 2024b)

Table 2: Examples of instructions for speech-related tasks used in SLM instruction tuning.



Table 1: Typology of text and spoken LMs. We use a loose notation here, where speech and texrt are
to be interpreted in context; for example, p(text|tert) in post-trained text LMs corresponds to modeling
some desired ouptut text given an input text instruction or prompt. “Post-training” refers to any form of
instruction-tuning and/or preference-based optimization of the SLM. Please see the sections below for details
and references for the example models.

Type of LM Training Strategy Model distribution Examples

pure text LM pre-training p(text) GPT, Llama

pure text LM post-training p(text|text) ChatGPT, Llama-Instruct

pure speech LM pre-training p(speech) GSLM, AudioLM, TWIST

pure speech LM post-training p(speech|speech) Align-SLM

speech+text LM pre-training p(text, speech) SpiRit-LM, Moshi (pre-trained)
speech+text LM post-training p(text, speech|text, speech) Moshi (post-trained), Mini-Omni
speech-aware text LM  post-training p(text|speech, text) SALMONN, Qwen-Audio-Chat

“tokenizing speech” — speech becomes like text for modeling



Wi ARL:

Pipeline Approach vs. End-to-End Approach

ASR — LLM — TTS SLM

preferred by industry for currently in research stage
controllability — think custom but very promising — major
vocabulary & ease of debugging barrier imo is downsampling

problem (will explain)



The big meta-level question to pay attention to...

e \What's the input?
e \What's the output?
e How do you glue the parts together?

e Based on the input and output, what is the SIGNAL being
learned (by the model)?



Let’s talk SLM architecture
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Input Text X™ Input Waveform X*?

Figure 1:  Overview of SLM architecture. See Sections 3 and 4 for more detailed descriptions of the
components and training methods, respectively.
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Let’s start from the speech signal

What is it? It's air pressure over time.

Microphones pick up differences in air
pressure — that’s sound.

So we get a lil plot of that.




Let’s start from the speech signal

What is it? It's air pressure over time.

Microphones pick up differences in air
pressure — that’s sound.

So we get a lil plot of that.

What’s the problem? Why can’t we just use

th at? . Redundancy in Raw Waveform

» Oversampling relative to perception:

At 16 kHz, you get 16,000 samples per second. But most speech information lives
You have to su pe r-du per oversam ple " below~4 kHz (Nyquist), and much of it is even lower (<2 kiz). - lots of extra

samples.

« Correlation across samples:
Neighboring values in the waveform are highly correlated (they don't change
randomly). For example, one period of a 200 Hz vowel spans ~80 samples — most
of those points contain the same information about the harmonic structure.

» Stationarity over frames:
Speech characteristics (formants, pitch) are stable for 20-50 ms. That's hundreds

of samples where the “meaning” doesn't change.

o raw data is very long, repetitive, and inefficient to model directly.



But, we have a trick!

We can do a fourier
transform —

Just pull out the frequency
components for that time
chunk!

frequency
/'



But, we have a trick!

We can do a fourier
transform —

Just pull out the frequency
components for that time
chunk!

So now we can store 80
values per second instead
of 16,000 values per
second

Over 1
second, we'’re
sampling
16,000 times
to get this
waveform

frequency
/'

Or, we can just
store 80
values for
each
frequency
component



But, we have a trick!

We can do a fourier
transform —

Just pull out the frequency
components for that time
chunk!

So now we can store 80
values per second instead of
16,000 values per second

So we store a “frequency
snapshot” each second
instead

J U

J

Convert &
store

Convert &
store



But, we have a trick!

We can do a fourier transform —

Just pull out the frequency
components for that time

chunk!
- VAN J
So now we c_:an store 80 values ~ ~ ~"
per second instead of 16,000
values per second Convert & Convert & Convert &
store store store

So we store a “frequency
snapshot” each second instead

— so we track how frequencies change over time
while massively reducing data.

It solves our over-sampling problem w/out losing important information <3



We end up with a spectrogram that looks like this!
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Short-Time Fourier Transform (STFT) Result

Time (s)

In our example,
this is the
equivalent of
overlaying a
couple seconds
of the FTs — so
we’re seeing how
the frequency
components
change over
time



Comparative Table of Function Approximation Methods

Aspect

Core Idea

Basis
Functions

Learning vs.
Direct
Computation

Domain of
Usefulness

Local vs.
Global

Interpretability

Convergence

Computation

Noise

Sensitivity

Applications

Fourier Transform

Represent f(z) as a sum of sinusoids: f(z) =
Yre_o ke, o= £ [ f(z)e *"dx

Fixed global sines/cosines.

Coefficients ¢; computed directly from integral formulas (no
learning).

Oscillatory/periodic signals, frequency analysis.

Global — each term affects all z.

Coefficients © frequency content.

Converges in L? for square-integrable f; Gibbs phenomenon at
discontinuities.

Fast Fourier Transform (FFT): O(N log N).

Good for filtering (frequency cutoff).

Signal/image processing, PDEs, spectral analysis.

Taylor Series

Approximate f(z) near a point a:

") (q -
f(z)~ T, L8z~ a)

Fixed monomials (z — a)™.

(n)
Coefficients un'a_) computed
directly from derivatives (no
learning).

Smooth analytic functions, valid

locally around expansion point.

Local — accurate only near a.

Coefficients © derivatives at

expansion point.

Converges within radius of

convergence if f is analytic.

Easy if derivatives known; costly
at high order.

Highly sensitive (derivatives

amplify noise).

Physics models, perturbation
methods, local expansions.

Neural Networks

Learn approximation from data using nonlinear units: f(z) ~
Zzl w; o({v;,z) + b;) (1 hidden-layer NN)

Adaptive nonlinear features via activation functions.

Coefficients w;, v;, b; learned from data via optimization (gradient
descent).

Arbitrary nonlinear, high-dimensional, non-analytic functions.

Both — architecture-dependent (RBFs local, deep nets capture
global).

Parameters (weights) not directly interpretable.

Universal Approximation Theorem: can approximate any continuous
f on compact sets.

Training costly (gradient descent), inference efficient.

Can overfit to noise unless regularized.

Pattern recognition, regression/classification, generative modeling.



Comparative Table of Function Approximation Methods

Aspect Fourier Transform Taylor Series

Core Idea Represent f(z) as a sum of sinusoids: f(z) =

D e G, G ﬁ [ f(z)e = dz

") (q -
f(z)~ T, L8z~ a)

Basis Fixed global sines/cosines. Fixed monomials (z — a)™.
Functions

" s : s s f(") a)
Learning vs. Coefficients ¢; computed directly from integral formulas (no Coefficients =1 computed

Direct learning). directly from derivatives (no

Computation learning).

Domain of Oscillatory/periodic signals, frequency ap Smooth analytic functions, valid
Usefulness locally around expansion point.
Local vs. i accurate only near a.
Global Speech moves through the air

in waves of air pressure... so
this “math tool” pretty
realistically models how
speech works & is cheap to
use & solves our
downsampling problem

Interpretgb Ots © derivatives at

Converd ithin radius of

ce if f is analytic.

Easy if derivatives known; costly

at high order.

Noise Highly sensitive (derivatives
Sensitivity amplify noise).
Applications Signal/image processing, PDEs, spectral analysis. Physics models, perturbation

methods, local expansions.

Approximate f(z) near a point a:

Neural Networks

Learn approximation from data using nos

There are lots of signals
where we don't really
KNOW how they
work... so this “math
tool” is the best tool we
can use

Both —
global).

Parameters (weights) not directly interpretable.

Universal Approximation Theorem: can approximate any continuous
f on compact sets.

Training costly (gradient descent), inference efficient.

Can overfit to noise unless regularized.

Pattern recognition, regression/classification, generative modeling.



There are actually lots of ways to encode speech features —

3.1.1 Continuous Features

To extract informative representations from raw waveforms, a speech representation model—either a learned
encoder or a digital signal processing (DSP) feature extractor—converts speech into continuous features.
These continuous features may include:

. Traditional spectrogram features, such as mel filter bank features (Huang et al., 2001).

2. Hidden representations from self-supervised learning-based (SSL) speech encoders, such as wav2vec
2.0 (Baevski et al., 2020), HuBERT (Hsu et al., 2021), or WavLM (Chen et al., 2022).

3. Hidden representations from supervised pre-trained models, such as Whisper (Radford et al., 2023)
or USM (Zhang et al., 2023b).

4. Hidden representations from neural audio codec models, such as SoundStream (Zeghidour et al.,
2022) or EnCodec (Défossez et al., 2023).



2. Hidden representations from self-supervised learning-based (SSL) speech encoders, such as wav2vec
2.0 (Baevski et al., 2020), HuBERT (Hsu et al., 2021), or WavLM (Chen et al., 2022).

— —
— Z —>
— —y
Input —> , , i —> Output
pe — 7 s E o £
— —
e Feature —
— Encoder Decoder =

Take it from an autoencoder



3. Hidden representations from supervised pre-trained models, such as Whisper (Radford et al., 2023)
or USM (Zhang et al., 2023b).

Next-token prediction

( ) . | | | Take it from a Whisper

EN |} scrige |} 00 !

Encoder Block T | ay e r

< Encoder Block > — Decoder Block

.
.

> Decoder Block
s
Encoder Block =]
c . .
2 . .
"a’ .
&
Encoder Block o
°Cl— Decoder Block

@ Sinusoidal
Positional Encoding — Decoder Block
/ 2x ConviD + GELU \ Learned @
Positional Encoding

Log-mel spectrogram Tokens in multitask training format




4. Hidden representations from neural audio codec models, such as SoundStream (Zeghidour et al.,
2022) or EnCodec (Défossez et al., 2023).

SBC

@AAC

Qualcomm’
e X

X Qualcomm’
aptX"HD

Bluetooth Audio Codecs

€3 Bluetooth’

Qualeomer S8
LC3

Codec = compressed,
lossLESS audio
representation

(big topic rn)



Encoder

B )
Byte Pair Encoding (BPE)I (3] 2}(5]
63 GJ

Deduplicate 1

) ) G)E) Discrete Tokens (Sectml.Z )

Quantization 1

D D D Dt[] D D D Continuous Features (53.1.1)

Speech
Representation Model

Temporal Compression (Section 3.1.3)

> Speech Encoder
(Section 3.1)

W b-prage-

Figure 2: A general pipeline for speech encoders. Note that different encoders use different components of

the pipeline. See Section 3.1 for more details.

Now we know how to go from
speech signal -> tokens

(more deets in the paper)

But we're not done — there’s
ANOTHER
over-sampling/compression
issue...



Encoder

B
Byte Pair Encoding (BPE)I (3] 2}(5]
GJ

) (7] (3J(3JT=T Discrete Tokens (Secﬂl.z )

Quantization 1

D D [:] DtD D D D Continuous Features (53.1.1)

Speech
Representation Model
W) -4 b

Temporal Compression (Section 3.1.3 )

So there are lots of tools to
apply here to downsample
AGAIN:

o
> Speech Encoder BPE
(seenna) e Multi-stream capture
e Duration prediction

J

Figure 2: A general pipeline for speech encoders. Note that different encoders use different components of

the pipeline. See Section 3.1 for more details.

Big theme: downsampling is a big deal in audio/speech world!!!!!!!!



3 Main Approaches to TRAIN & SLMs

[most expensive $3%]

Speech —> Speech Encoder ? «ab
—-> Sequence Model (fine-tuned jointly)

Text  —> Token Embedding

[least expensive $]

&

Speech Encoder —> Modalijty Adapter —> Sequence Model

|
\'%

Speech
Text —> Token Embedding —-> Modality Adapter —> Sequence Model

[mid-expensive $$] [PS this is kinda like just training 1 modality adapter]

Speech —> Speech Encoder —> (aligned directly to LM token space) —> Sequence Model
Text —> Token Embedding - - > Sequence Model




Let's talk SLM architecture

Output Text Y™ Output Waveform Y7

Il Pure speech LM e R T o Ok yay so now we
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[ Modality Adapter Adp™ ] ( Modality Adapter Adp*”? | Section3.2 <-------- Training in Section 4

[ Speech Encoder Enc? ] Section 3.1

Input Text X™ Input Waveform X*P

Figure 1:  Overview of SLM architecture. See Sections 3 and 4 for more detailed descriptions of the
components and training methods, respectively.
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Figure 1:  Overview of SLM architecture. See Sections 3 and 4 for more detailed descriptions of the
components and training methods, respectively.



Modality Adapters

[least expensive $]
Speech —> Speeéh Encoder —> Modality Adapter —> Sequénce Model
Text —> Token Embedding —> Modality Adapter —> Sequence Model

In many SLMs (especially speech-aware text LMs), the speech encoder (Section 3.1) and the sequence model
(Section 3.3) are initially developed separately and then combined. It is therefore necessary to somehow
align the output of the speech encoder with the expectations of the sequence model, and this is the role
of the modality adapter. The modality adapter is typically trained on downstream tasks or, in the case of
speech+text LMs, as part of pre-training (see Section 4 for more details on training).

The whole point is to make the SPEECH TOKENS and TEXT
TOKENS match up correctly!!!!



Lots of ways to do a Modality Adapter... Broad Overview

Comparative Table of Adapter Architectures in Multimodal Models

Adapter Architecture

Linear [ MLP Projection

Quantization (Discrete
Tokens)

Cross-Attention
Adapters

Prefix / Prompt Tuning

Bottleneck Adapters

Fusion [ Multi-Modal
Attention

Speech-Language

Project continuous speech embeddings (e.g.,
wav2vec2, HUBERT) into LLM token space.

VQ-VAE, k-means clustering to produce “pseudo-
text” tokens from speech, directly fed into LLM.

LLM attends to speech embeddings via cross-
attention blocks (e.g., spoken QA grounding).

Encode speech embeddings into a sequence of
pseudo-tokens prepended as “soft prompts.”

Small trainable modules (e.g., LSTM, Conformer
bottlenecks) compress variable-length speech into

manageable embeddings.

Speech features and LLM hidden states jointly

processed via fusion transformer blocks.

Vision-Language

Project vision encoder outputs (ViT/CNN/CLIP) into

the same dimensionality as LLM embeddings.

Less common (though discrete VQ-image tokens
exist, e.g., VQGAN), but most models use

continuous projection instead.

Popular: Flamingo inserts cross-attention layers

where LLM queries image embeddings.

Encode image embeddings as prefix tokens before
text input (BLIP-2 Q-Former, Kosmos-1).

Smaller adapter layers inserted in the vision

encoder or between encoder—decoder.

Multimodal transformer fusion (e.g., CLIP-LMs,
PaLM-E) combining vision & text tokens.

Recommender-Language

Map item embeddings or categorical features into

LLM-compatible vectors.

Rare — item IDs can act as discrete tokens, sometimes
directly embedded as vocab.

LLM attends over user history/item embeddings via
cross-attention, aligning behavioral context with

language tokens.

Encode user/item history as prompt tokens describing
context (P5, TALM).

Trainable bottlenecks align high-dim item features with

LLM hidden states.

Fusion of userf/item embeddings with natural language

tokens for personalized reasoning.

The whole point is to make the [SPEECH/VISION/REC] TOKENS and LLM TOKENS match up correctly!!!!



Lots of ways to do a Modality Adapter...

Connectionist Temporal Classification (CTC)-based compression: This method compresses H*P
(Eq. 1) according to the posterior distribution from a CTC-based speech recognizer (Gaido et al., 2021).
CTC (Graves et al., 2006), a commonly used approach for ASR, assigns each time step a probability distri-
bution over a set of label tokens, including a blank (“none of the above”) symbol. The time steps with high
non-blank probabilities indicate segments that are likely to carry important linguistic information. CTC
compression aggregates the frame-level labels, specifically by merging repeated non-blank labels and remov-
ing blanks. This approach produces a compressed representation intended to retain the relevant content of
the original sequence while significantly reducing its length (Wu et al., 2023b; Tsunoo et al., 2024).

How CTC collapsing works

For an input,
like speech ‘*' “ -
Predict a Use to

sequence of h e e € I € I | o) 0 | input a blank (e)

tokens

Merge repeats,
drop € h

Final output h e | l O |



Lots of ways to do a Modality Adapter...

Q-Former: The Q-Former (Li et al., 2023) is an adapter that produces a fixed-length representation by
encoding a speech representation sequence of arbitrary length into M embedding vectors, where M is a
hyperparameter (Lu et al., 2024b).

Let the input speech representation sequence be:

X:{wlamZa"'awL'}7 T eRdl’ (3)

where L’ is the sequence length and d’ is the dimension of the embeddings.

To achieve a fixed-length representation, Q-Former introduces M trainable query embeddings:

Qz{‘]l»‘]?a---,(IM}, QiERd(. (4)

These queries interact with X via a cross-attention mechanism:

QWo(XWk)T
Vd

where W, Wk, and Wy are learnable projection matrices. The result is a sequence of M embeddings.

Attn(Q, X) = softmax ( ) XWy, (5)

In some approaches, instead of directly encoding the entire utterance into M vectors, a window-level Q-
Former is applied (Yu et al., 2024; Pan et al., 2024; Tang et al., 2024) to retain temporal information. In the
window-level Q-Former, the input embedding sequence is segmented, and the Q-Former is applied to each
segment.

Lu et al. (2024a) compare the Q-Former with CNN-based modality adapters in a speech-aware text LM,
finding that the Q-Former produces better performance on the Dynamic-SUPERB benchmark (Huang et al.,
2024) (see Section 7 for more on this and other SLM benchmarks).

How do you
make speech
tokens & text
tokens match up
correctly?
Compression!

This approach
plugs more
directly into the
LLM (in the
attention
mechanism)



[mid-expensive $$] [PS this is kinda like just training 1 modality adapter]

Speech —> Speech Encoder —> (aligned directly to LM token space) —> Sequence Model

Text -> Token Embedding > Sequence Model

Implicit alignment Speech and text modalities can be implicitly aligned through techniques such as the
“modal-invariance trick” (Fathullah et al., 2024) or behavior alignment (Wang et al., 2023a). The idea is that
the model should produce identical responses regardless of the input modality, provided the input conveys
the same meaning. This approach often utilizes ASR datasets. The text transcript is input to a text LLM to
generate a text response, while the corresponding speech recording is input into the SLM, which is trained
to generate the same text response. Another idea found to be useful for implicit alignment is training spoken
LLMs for audio captioning, where a spoken LLM takes audio as input and outputs its description. It has
been observed that training a spoken LLM solely through audio captioning can generalize to tasks it has
never seen during training (Lu et al., 2024a;b).

Explicit alignment Speech and text modalities can also be explicitly aligned by matching speech features
to corresponding text embeddings, via optimization of appropriate distance/similarity measures. For exam-
ple, Wav2Prompt (Deng et al., 2024) and DiVA (Held et al., 2024) align modalities by minimizing the Lo
distance between speech features and the token embeddings of their transcripts in a text LLM while keeping
the text embeddings fixed.



23
Speech —> Speech Encoder \ G

% -> Sequence Model (fine-tuned jointly)
Text  —> Token Embedding /

You just train the whole thing end-to-end, it's expensive
and there’s not really any tricks



— Another great reference!

Summarizing Speech: A Comprehensive Survey

Fabian Retkowski' Maike Ziifle! Andreas Sudmann? Dinah Pfau®
Shinji Watanabe! Jan Niehues' Alexander Waibel'+
IKIT 2University Bonn *Deutsches Museum “CMU
{fabian.retkowski,maike.zuefle, jan.niehues,alex.waibel}@kit.edu
asudmann@uni-bonn.de d.pfau@deutsches-museum.de swatanab@andrew.cmu.edu

EMNLP ‘25



— Another great reference!

Reference

Audio Encoder

Projector

LLM

Fathullah et al. (2024)

O Conformer (Gulati et al., 2020)

O Linear

# LLaMA-2-7B-chat (Touvron et al., 2023)

Shang et al. (2024)

O Conformer (Gulati et al., 2020)

O Q-Former (Li et al., 2023)

=~ LLaMA-2-7B-chat (Touvron et al., 2023)

Microsoft et al. (2025)

O Conformer (Gulati et al., 2020)

O MLP

# Phi-4-mini-instruct (Microsoft et al., 2025)

Kang and Roy (2024)

(L) HuBERT-Large (Hsu et al., 2021)

O Linear

% MiniChat-3B (Zhang et al., 2024a)

Ziifle et al. (2025)

# HuBERT-Large (Hsu et al., 2021)

O Q-Former (Li et al., 2023)

% LLaMAS3.1-8B-Instruct (Grattafiori et al., 2024)

He et al. (2025)

% MERaLiON-Whisper (He et al., 2025)

O MLP

=~ SEA-LION V3 (He et al., 2025)

Chu et al. (2024)

O Whisper-large-v3 (Radford et al., 2023)

O Linear

O Qwen-7B (Bai et al., 2023)

Eom et al. (2025)

% Whisper-large-v2 (Radford et al., 2023)

& Q-Mamba (Eom et al., 2025)

O Mamba-2.8B-Zephyr (xiuyul/mamba-2.8b-zephyr)

Table 2: Overview of Audio Encoder — Projector — LLM Architectures (& trainable, % frozen, ~ LoRA)



Let's talk SLM architecture
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Figure 1:  Overview of SLM architecture. See Sections 3 and 4 for more detailed descriptions of the
components and training methods, respectively.



Let's talk SLM architecture
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Figure 1:  Overview of SLM architecture. See Sections 3 and 4 for more detailed descriptions of the
components and training methods, respectively.



3.4 Speech Decoder

The speech decoder converts speech representations—whether continuous features, phonetic tokens, or audio
codec tokens—back into waveforms. The speech decoder can take various forms:

1. Vocoder (Kong et al., 2020) for continuous features, similar to those used in traditional synthesis sys-
tems. For instance, in Spectron (Nachmani et al., 2024), a generated mel spectrogram is synthesized
into audio using the WavF'it vocoder (Koizumi et al., 2023). [

They generate these —

2. Unit-based vocoder (Polyak et al., 2021) based on HiFi-GAN (Kong et al., 2020) for phonetic to-
kens. These vocoders take phonetic tokens as inputs and optionally combine them with additional
information to improve synthesis quality. For example, when phonetic tokens are deduplicated, a
duration modeling module is often included in the vocoder (Lakhotia et al., 2021).

3. Codec decoder (Guo et al., 2025). When the SLM generates audio codec tokens, these tokens can
be input directly into the corresponding pre-trained audio neural codec decoder (without additional

training) to get the waveform.  They generate codecs



3 Main Approaches to TRAIN & SLMs

[most exj

Speech —> Speech Encoder ? «ab
—> Sequence Model (fine-t\
Text  —> Token Embedding

[least expensive $]

&

Speech Encoder —> Modalijty Adapter —> Sequence Model

|
\'%

Speech
Text —> Token Embedding —-> Modality Adapter —> Sequence Model

[mid-expensive $$] [PS this is kinda like just training 1 modality adapter]

Speech —> Speech Encoder —> (aligned directly to LM token space) —> Sequence Model
Text —> Token Embedding - - > Sequence Model




They're doing the training with special speech tokens!!!!

. 1 1 -|speech, textinstruction). . .
p(-|speech, instruction) p(:|apeech, ) Either one! Just depending
p(-|speech, speechinstruction) on setup

Token [ Specifier Training Paradigm Task Example Input Expected Output
Q <task:TRANSCRIBE> Task-specific ASR [speech: “Hello, how are you "Hello, how are you today?"
L\L today?"]
O
'6"'. <task:SUMMARIZE> Task-specific Speech Summarization [speech: lecture audio] "The lecture explains Fourier
UI) (D transforms as frequency
x § decompositions.”
(7))
< > o . v
[ W <task:TRANSLATE_EN> Task-specific Speech Translation [speech: "Bonjour, comment ¢a "Hello, how are you?"

va?"]

<speech_instruction:CL Instruction-tuning Emotion Detection [speech: angry utterance] "angry"
2 ASSIFY_EMOTION>
)
~
O <speech_instruction:CO Instruction-tuning Dialogue Response [speech: "What time is it?"] "It’'s 3:00 PM."
D NVERSATION>
=
1) <speech_instruction:MU Instruction-tuning Multimodal Fusion [speech: “Look at this picture."] + "The car is red."
2 LTIMODAL_QA> (Speech + Text) [text: “What color is the car?”]
—

Task-specific = “menu of fixed commands” (rigid, controlled).

Instruction tuning = “free-form instructions” (flexible, generalizable).



So let’s talk about how you design your 10Ss aka objective function for training &

If you
want to

Speech -> Speech Encoder 4]
> Sequence Model (fine-tuned jointly)
Te > Token Enbedding

[PS this is kinda like just training 1 modality adapter]

[
Speech —> Speech Encoder -> (aligned directly to LM token space) -> Sequence Model
Text -> Token Embedding Sequence Model

x‘}\!
Speech —> Speech Encoder —> Modal"ty Adapter —> Sequence Model
Text > Tokén Embedding —> Modality Adapter —> Sequénce Model

TASK-SPECIFIC

TUNING
INSTRUCTION
TUNING

How CTC collapsing works

h e e I 1 o o
h e I | o !
) I ef !

do
THIS

Stage

Pretraining (AR LM)

Adapter [/ Alignment

Task-specific training

Instruction tuning

Specialized (optional)

Multi-task combo

Objective [ Loss

Autoregressive next-
token prediction

L2 alignment

Contrastive (CLIP-style)

Cross-entropy w/ task

token

Cross-entropy w/

instruction

CTC (speech alignment)

Reconstruction

Weighted mix

Set up your

math like
THIS

Formula

Lar =—Y ,logp(y: | y<t, )

£a,lign = ”fspeech(Xsp) - ftext(tht)Hg

- sp_ptoty /o
Lcontrast = log gh,péi;ﬁls(i’;(}gp,f)b’/)/?r)

Ltask = Et logp(yt | Yty XSP, (task))

Linstr = — Y, 10g p(y¢ | Y<t, X °P, instruction)

Lcrc = — log p(transcript | X°P)

Lrecon = | X — X713



This is cool:
iInterruption
handling w/ a
duplex model

Duplex = 2 parallel

streams for user and SLM,

(a)

(b)

(c)

open at all times — robust to
interruptions, no assumption

of “turn-taking” really

(d

Walkie-Talkie vs. Phone Call

tell me a story ok stop | don’t like the story

User: —aiwsliioliibiombidind Hows e poet
Onceuponatime ina small village
SLM: Y et ot
PREE R DDDDDDDDC?C‘,F‘.T.F,
TTTTTT N
[ SpokenLLM
'-J'_l'_TISlglglglééé&&&éé&é.. ) -_T:'__T;
E0NEEATENGEN 000G
i 0 [ f ) B 25 05
11 [ 1 I 1 I 1 !

Spoken LLM

—

[
L 003500508500800000

listen |
- PPPP99799%

D SLM generated
025 7 SLM generated (silence)
C] User’s speech

L5LEE
:

Spoken LLM

User s speech (silence)

G0000ER0O00D0 00

oo

hé&]é)

Figure 5: Full-duplex speech conversation. (a) An example of full-duplex speech conversation between a
user and an SLM. (b) Dual-channel approach. (c) Time-multiplexing approach (with equal chunks). (d)
Time-multiplexing approach (where the SLM controls the switching between listening and speaking modes).



8 Challenges and future work

Model architecture The optimal representation of speech within SLMs remains unclear. Speech repre-
sentations in SLMs include both discrete and continuous varieties, derived from a wide range of encoders.
This design choice can also influence other architectural choices in an SLM, for example depending on the
information rate of the encoder and whether it encodes more phonetic or other types of information.

Another open question is determining the best method to combine speech and text, which applies to all as-
pects of SLM modeling and training. We have described various choices of modality adapters and approaches
for interleaving speech and text. These have not been thoroughly compared, so the effect of each modeling
choice is still unclear.

A final architectural challenge is that current SLMs are large and slow, making them impractical for real-time
and on-device settings. To some extent this is because various compression algorithms (e.g., (Lai et al., 2021;
Peng et al., 2023a; Ding et al., 2024)) and alternative architectures (e.g., Park et al. (2024)) have not been
widely applied to SLMs. However, there is also an inherent efficiency challenge that arises when combining
multiple pre-trained components, sometimes with different architectures and frame rates.



Second,

Let’s talk about the
robustness of
pipeline approaches.




Wi ARL:

Pipeline Approach vs. End-to-End Approach

ASR — LLM — TTS SLM

preferred by industry for currently in research stage
controllability — think custom but very promising — major
vocabulary & ease of debugging barrier imo is downsampling

problem (will explain)



Pipeline approaches are super susceptible
to issues processing disfluencies:

Set a Find me the nearest Where is my

timer for gas station — no, wallet, you
seven, uh, sorry, grocery know, the black

minutes. store. one | always

carry?

Smart Speaker Smart Phone Smart Glasses

Fig. 1. Removing disfluencies such as INTJ (uh), EDITED
(gas station is replaced with grocery store), and PRN (you
know) ensures clean text input for downstream tasks. Our



Pipeline approaches are super susceptible
to issues processing disfluencies:

3
ttree
((S(PRN(S (NP-SBJ (PRP I))(VP (VBP mean)))(, ,))(CC but)(EDITED(RM(-DFL- \[))(S(NP-SBJ(PRP she)) (VP-UNF(VBD wa tdisﬂuent
Z; ;??VP(??_;;:}Y?;; ;; ,) (IP(-DFL- \+))) (NP-SBJ(PRP she))(VP(VBD was) (ADJP-PRD(RB truly)(RS(-DFL -\1))(JJ awar S but SSEERERTN she
o - Equivalently: was truly aware."
S
|
I : EDTTED : : I Ltag
[PRN, PRN, NONE,
PTN I T \IIP I } EDITED, EDITED, EDITED,
s N | | VP-UNF ADIP-PRD L NONE, NONE, NONE, NONE]
S | | | [ | | |
NP-SBJ W NP-SBJ | ADVP RS I |
| | | | | | | | | | | tﬂuent
PRP VBP , CC -DFL- PRP  VBD RB -DFL- 33 . -DFL- Pe: y
| | | | | | | | | | | ut she was truly aware.
I mean , but she was truly \1] aware . E_S




Quantifying the Impact of Disfluency on Spoken Content
Summarization

Maria Teleki, Xiangjue Dong, James Caverlee
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Simple disfluencies can kill model performance.

Original

Hello and welcome to our podcast! Let's get right to it. Today 0,140

we're going to be interviewing a very special guest, someone |
know you guys have been excited about having on the show.

e

0.135

Repeats with N=3
0.130

Hello and welcome to our podcast! Let's get get get get right to it.
Today we're going to be interviewing a a a a very special guest,
someone | know you guys have been excited about having on the
show.

o
=
N
w

T

o
=
N
o

ROUGE-L Mean

Interjections with N=3
0.1154

—e— Interjections
—e— False Starts
0.110 Interjections + False Starts
Repeats + False Starts
Repeats + Interjections
—e— Repeats + Interjections + False Starts

Hello and welcome to our podcast! Let's get right uh okay okay

to it. Today we're going to be interviewing a very special um so |
mean guest, someone | know you guys have been excited about
having on the show.

(Lo o )

0.105

0 2 a 6 8 10
N Parameter

False Starts with N=3

Hello and welcome to our podcast! Let's get right to it. Today
we're today we're today we're today we're going to be
interviewing a very special guest, someone | know you guys have
been excited about having on the show.

Increase N

|
|
J

(Go 22

(a) ROUGE-L over increased N on BART model.
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So we make a set
of concrete
recommendations
to help these
models perform
better on
disfluent, spoken
data!

3. RESULTS & RECOMMENDATIONS

We analyze the disfluency removal behavior of LLMs and
provide recommendations (R1-R9).

Open-Source vs. Proprietary. Looking to Table 3, propri-
etary models (gpt-40, gpt-40-mini) achieve the highest scores,
with margins of 10-15 points over the best open-source alter-
natives. We attribute this to training exposure to Whisper-
transcribed speech data [24]. (R1) Proprietary models are
currently the most reliable for production systems, while
open-source models require targeted augmentation with
spoken data.

Segmentation (s) vs. Full Input (f). Segmenting tran-
scripts consistently improves both mean performance and
stability, e.g., gpt-4o improves from £r=76.13 (f) to 82.38
(s) at k=1. This supports prior evidence of long-context
degradation in LLMs [25, 26]. (R2) Segmentation is an
effective preprocessing step that should be applied.

Few-Shot Sensitivity (k). Increasing k does not uniformly
improve results. Small models (e.g., MobileLLM) gain
slightly, but others show degradation (e.g. Llama-3B/8B/70B)
when more examples are provided. (R3) Few-shot prompt-
ing should be used with caution, as some model families
misinterpret exemplars and over-edit fluent text.

Disfluency Category Performance. Z-Scores show that
EDITED nodes are handled well, but INTJ and PRN nodes
are frequently missed, despite prior work suggesting these are
the easiest to detect [19, 17]. (R4) Future modeling should
focus on under-served categories (INTJ, PRN) to improve
robustness across all disfluency types.

Over-Deletion Failures. Several models (e.g., Llama-8B,
04-mini) achieve near perfect recall but at the cost of very
low precision, deleting fluent tokens. Segmentation often mit-
igates this collapse mode. (RS) Segment-level evaluation

helps reduce over-deletion risk.

Under-Deletion Failures. Some models (e.g., Qwen se-
ries) exhibit the opposite trend of over-deletion, achieving
high precision but low recall (purple). These models pre-
serve most fluent tokens but fail to remove many true dis-
fluencies, especially in INTJ and PRN categories. This re-
flects conservative editing strategies and limited exposure to
conversational disfluency distributions. (R6) Models prone
to under-deletion require additional filtering or targeted
fine-tuning to ensure sufficient disfluency coverage.

Reasoning-Oriented Models. Models tuned for reasoning
(04-mini, Phi-4) perform poorly, showing high recall but ex-
treme over-deletion (blue). (R7) Reasoning capability does
not translate to disfluency removal; specialized evaluation
remains necessary.

Impact of Model Size. Model scaling generally improves
disfluency removal, with Qwen, GPT, and Llama families
showing upward trends. However, gains are nonlinear — e.g.,
Qwen3-1.7B underperforms both smaller and larger vari-
ants — likely due to training data or optimization differences
rather than capacity limits. (R8) Model choice should be
guided by empirical benchmarks on target domains and
disfluency categories rather than size alone.

Fine-Tuning and Generalization. Looking to Tables 4 and
5, fine-tuning improves performance to near SOTA levels
(e.g., gpt-4o-miniy; achieves £p=96.6), but evaluation on
GSM8K, MMLU, and CoQA shows degraded performance
on unrelated tasks. (R9) Fine-tuning is suitable for ded-
icated disfluency pipelines, but not for general-purpose
conversational models.




Ok, so that's LLMs - what about ASR systems?

Comparing ASR Systems in the Context of Speech Disfluencies

Maria Teleki, Xiangjue Dong", Soohwan Kim', James Caverlee’
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— TLDR: Whisper!



Last,

Let’s talk about
speaker variation!




Masculine Defaults via Gendered Discourse in Podcasts and
Large Language Models
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We propose the Gendered” Discourse
Correlation Framework (GDCF) to monitor &
identify discourse terms at scale.

Modules

Podcast Transcripts Conversational
/ Parser

talking about Alan

Podcast Audio [
Turing, a pioneer in Topic Modeler
computer science

Hello everyone.
lI||‘II||l
who is known for

Today on the, uh,
n episodes his numerous, um,

ASR System podcast, we're
contributions to...

n episodes

L 30 sec.

Feature Vectors f,
NP Count

INTJ Count €

Test Each (fir f,-) for Pearson's Correlation
with Bonferroni Correction o« = 0.05/2

o Significant Correlation
if score |r| > 4 and p-value p < a,then:

Pos. Linear Rel.,, ife¢> 4§
Neg. Linear Rel., ifc< -4

- =

(fnfj) = {

Insignificant Correlation
if score |r| < 4 or p-value p > «

____________________



We find that women & men’s speaking patterns
are different.

Topic N  Gender r Topic N Word List Topic N Categories Topic N Gender
Topic 3 wlell?r?n _(())1154 women, woman, men, baby, pregnant, girls, male, doctor, health, birth ~ Content - Pregnancy Women
Topic 10 WI\(;I?:H _%llg energy, body, feel, mind, space, yoga, love, beautiful, feeling, meditation Content - Yoga Women
Topic 49 Wlslr:;n '31271 game, know, think, team, going, mean, play, year, one, good Content - Sports Men
Topic 71 Wh(;[?r?n -%lli christmas, sex, girl, hair, love, get, date, girls, let, wear Content - Dating Women

Topic 54 Woen get, like, know, right, people, going, podcast, make, want, one Discourse Men

going, know, think, get, got, one, really, good, well, yeah Discourse

like, know, really, going, people, want, think, get, things, life Discourse

Men: s=And I was going, hey, it’s cold outside...

s’ =And I was like, hey, it’s cold outside...



Is this difference reflected in LLM embeddings?

Men:

A
)

»
>

Z1

s=And I was going, hey, it’s cold outside...

s’ =And I was like, hey, it’s cold outside...



Yes. Women have a less stable/robust embedding
representation than men.

Sw Sm
s Men 10091 mmm Men
80 Women Women
80 -
60 -
[ 60
40 - C
40
20 1 20 -
0 - 0
‘\-’L”)V’Ob’\‘bc).\'o ’\"1«”)&‘)6’\%@,&
Y Y
Men: s=And I was going, hey, it’s cold outside...

Women: s' =And I was like, hey, it’s cold outside...



The use of these mascul:ne dlscourse terms is

associated with ¢

Topic N TopicM r Topic N Word List Topic N Categories = Topic M Word List Topic M Categories
Topic 54  0.11 data, new, technology, public, bill, = Content - g?):iiﬂ:’ rlilna(l)(‘:’ 3%3 t’ E))trtl(;ple, EOME:  Discourse (Men)
Topic 11 theory, science, system, security, Technology/ &5+ {)ike e réally g e e
Topic 62 -0.20 article Political want, think, get, things, life Discourse (Women)
business, money, company, market, T T
Topic 12 Topic 54  0.24 buy, right, million, companies, pay, Content - Business __ g (i ’ ke » IEN, PeOpie, EOINE,  pyiscourse (Men)
el e podcast, make, want, one
Topic 60 0.18  game, games, play, playing, like, Content - Video gﬁmg’olgzio‘l’letﬁmlz ajghet, it i e Discourse (Men)
Topic 79 played, nintendo, video, fun, Games likz’ gknow;v rez,ll%,y gomg, people
Topic 62  -0.13  switch want, think, get, things, life Discourse (Women)
. . , .
Men: s=And I was going, hey, it’s cold outside...

s’ =And I was like, hey, it’s cold outside...



The use of these masculine discourse terms is
associated with .

This is an opportunity to
build systems that actually
WORK for female speakers -
there’s an untapped market

out there!



A quick
plug
for our
recent
work —

Maria Teleki @ - You
CS PhD Student @ TAMU | Speech Al/RecSys
1d-®

In our new work, ¥ CHOIR: Collaborative Harmonization fOr Inference
Robustness, we show that different LLM personas often get different benchmark
questions right! CHOIR leverages this diversity to boost performance across
benchmarks. ul

You always hear about the "bias-accuracy tradeoff" meaning that &2 model bias,
LJ system performance, so £J $$$ for a company. So much of the conversation
around bias and diversity has focused on how to incentivize companies to debias
their models (e.g., through new legislation).

To me, this work is super exciting because we take a totally different
perspective: we show that i diverse perspectives, [ system performance, so
&) $$$ for a company! With this work, we argue that <<< @ diverse perspectives
are absolutely necessary >>> from an economic standpoint.

* https://Inkd.in/gr_Mmuvsy
@ Xiangjue Dong (1st author), Cong ("Nicole") Wang, Millennium Bismay,
and James Caverlee



We’ve also got some upcoming work on
social-media-as-a-signal, stay tuned!

r/conspiracy ) Intertopic Map ~ Top 20 Topics

Top 20 Topics in r/conspiracy

Count




James Caverlee Xiangjue Dong Haoran Liu Sai Tejas Oliver Grabner

(my advisor) Janjur

Stephanie Rohan Ketan Verma Chengkai Liu Yin Zhang
Birkelbach Chaudhury

Soohwan Kim

+ Jason Kim, Lingfeng Shi, Cong Wang, and shoutout to work-in-progress collaborators too :)



Conversational Al
MHAEIAR TELEEI]

Will post
slides after
the talk!
u
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