Comparing ASR Systems in the Context of Speech Disfluencies Maria Teleki, Xiangjue Dong, Soohwan Kim, James Caverlee **Texas A&M University**

Introduction & Experimental Settings

• We evaluate the disfluency capabilities of two ASR systems – WhisperX [1] and Google ASR [2] – in terms of their interactions with a parsing-based disfluency annotation model [3]. • Why? It's natural for application developers to plug an ASR-created transcript into a disfluency removal model. 4-6% of non-scripted speech is disfluent [4]. • We use [3] to annotate the **3 types of disfluencies**:

(i) interjections (**INTJ**) – ex: let's go to the <u>uh</u> store today (ii) parentheticals (**PRN**) – ex: let's to go the store, wait no, the movies today

(iii) edited nodes (EDITED) – ex: let's to go the store, wait no, the movies today

• We use the **Spotify Podcasts Dataset** [5] for our analysis.

• We obtain ground truth transcripts via human annotations (N=3).

RQ1 (10 episodes): How does the choice of ASR system (WhisperX, Google ASR) impact performance (as compared to the human-annotated ground truth)?

• While WhisperX performs better overall in terms of automated metrics, Google ASR outperforms WhisperX in WIL and **BLEU** for specifically

		Character-level	evel Word-level		Sentence-level		
		CER (↓)	WER (\downarrow)	WIL (\downarrow)	ROUGE-L (†)	BERTScore (†)	BLEU (†)
Scriptod	Google ASR	$3.46_{\pm 2.07}$	$7.39_{\pm 2.99}$	$15.02_{\pm 1.67}$	$93.83_{\pm 2.46}$	$97.66_{\pm 1.31}$	$85.09_{\pm 0.32}$
Scripted	WhisperX	1.87 ±1.49	3.36±1.37	$14.01_{\pm 2.45}$	97.41 ±0.93	99.03 ±0.53	$86.24_{\pm 1.12}$
Non-Scriptod	Google ASR	$8.87_{\pm 5.95}$	$12.98_{\pm 6.96}$	$15.03_{\pm 0.67}$	$90.48_{\pm 5.06}$	$96.29_{\pm 2.07}$	84.85 _{±1.56}
Non-Scripted	WhisperX	6.05 _{±3.77}	9.74 ±5.32	$15.32_{\pm 0.97}$	93.34 ±3.29	97.40 ±1.25	$84.71_{\pm 1.96}$
A 11	Google ASR	$6.71_{\pm 5.37}$	$10.47_{\pm 6.18}$	$15.02_{\pm 1.09}$	$91.82_{\pm 4.39}$	$96.84_{\pm 1.86}$	$84.95_{\pm 1.18}$
AII	WhisperX	4.38+3.64	7.19+5.21	14.79+173	94.97 +3 27	98.05 +1 30	85.32+1 78

AM

RQ2 (10 episodes): How does the choice of ASR system (WhisperX, Google ASR) impact the specific disfluency types which are transcribed (as compared to the human-annotated ground truth)?

- WhisperX transcribes closer to the ground truth number of *uhs*, *ums*, and INTJ nodes than Google ASR. • The ground truth number of *uhs* and *ums* is higher.
- Google ASR transcribes closer to the ground truth number of EDITED nodes than WhisperX.
- WhisperX and Google ASR transcribe the same number of PRN nodes.

		C"uh"	C"um"	CINTJ	CPRN	CEDITED
	Ground Truth	0	0	$1.00_{\pm 0.82}$	$0.25_{\pm 0.50}$	$0.58_{\pm0.81}$
Scripted	Google ASR	0	0	$1.00_{\pm 0.82}$	0	$1.50_{\pm 1.91}$
	WhisperX	0	0	$0.75_{\pm 0.96}$	0	0.75 ±1.50
	Ground Truth	$1.67_{\pm 1.97}$	$1.33_{\pm1.21}$	$9.06_{\pm 6.81}$	$2.00_{\pm 2.38}$	$5.33_{\pm 4.25}$
Non-Scripted	Google ASR	0	0	$6.33_{\pm 5.32}$	$2.17_{\pm 2.93}$	5.33 _{±2.50}
	WhisperX	$0.33_{\pm 0.82}$	$0.67_{\pm 0.82}$	$\textbf{7.83}_{\pm 6.40}$	$\textbf{2.17}_{\pm 2.40}$	$3.67_{\pm 2.73}$
	Ground Truth	$1.00_{\pm 1.70}$	$0.80_{\pm 1.14}$	$5.83_{\pm 6.59}$	$1.30_{\pm 2.02}$	$3.43_{\pm4.04}$
All	Google ASR	0	0	$4.20_{\pm 4.85}$	$1.30{\scriptstyle \pm 2.45}$	3.80 _{±2.94}
	WhisperX	0.20 ±0.63	0.40 ± 0.70	$\textbf{5.00}_{\pm 6.04}$	$\textbf{1.30}_{\pm 2.11}$	$2.50{\scriptstyle\pm2.68}$

RQ3 (82,601 episodes): Are these findings consistent at a large scale?

- Google ASR transcribes hardly any *uhs* or *ums*.
- Same trend as small-scale in RQ2: WhisperX transcribes more INTJ nodes, while Google ASR transcribes more EDITED nodes however Google ASR transcribes more PRN nodes.

		C"uh"	C"um"	CINTJ	CPRN	CEDITED
;	Google ASR	$0.09_{\pm 0.35}$	$0.25_{\pm 0.70}$	$48.02_{\pm 37.12}$	12.71 ±11.29	30.26 ±13.71
	WhisperX	$1.38_{\pm 3.03}$	1.69 ±3.14	50.90 _{±39.88}	$10.84_{\pm 9.79}$	$16.71_{\pm 9.58}$

• We hypothesize this is due to the vocabulary diversity of WhisperX versus that of Google ASR.

References

[1] M. Bain, et al., "WhisperX: Time Accurate Speech Transcription of Long-Form Audio," in Interspeech, 2023. [2] Google Cloud, "Speech-To-Text: Automatic Speech Recognition," 2024. [Online]. Available: https://cloud.google.com/ speech-to-text

[3] P. J. Lou and M. Johnson, "Improving Disfluency Detection by Self-Training a Self-Attentive Model," in ACL, 2020. [4] E. Shriberg, "Preliminaries to a Theory of Speech Disfluencies," Ph.D. dissertation, 1994. [5] A. Clifton, et al., "100,000 Podcasts: A Spoken English Document Corpus," in COLING, 2020.

Conclusion

These results suggest that it may be **beneficial to** select an ASR system based on the distribution of disfluent node types present in the data.

Texas A&M University Department of Computer Science & Engineering

Paper, code, project website with annotation guidelines & extended results, and more!

