
Information Storage & Retrieval

CSCE 670 :: Spring 2024
Texas A&M University
Department of Computer Science & Engineering
Prof. James Caverlee and Maria Teleki 🤠

Class 6: Evaluation

Search Engines

1

2

reveille tamu

Google returned
2 ✅ relevant results

✅

✅

Search Engines

1
reveille tamu

Google returned:
1 ✅ relevant result
1 ❌ non-relevant result

✅

❌
2

✅ relevant search results =

��

�� $

$

✅ relevant search results =
but more importantly,

People getting access to the
information they need.

sign
s of

 a

hear
t at

tack

how to invest

how to register to vote

how to t
ell

if email
 is

a scam

how to perform CPR

what is a 401khow t
o

go to

colle
ge

The importance of evaluation

The ability to measure differences 📐 underlies
experimental science 󰟾

How well do our systems work?
Is Algorithm A better than Algorithm B?
Really? Under what conditions?

Evaluation drives: WHAT to research
Identify techniques that work and that don’t

Measuring Relevance

English Math Picture
1) A set of documents

D = {(di, qj, rij)}

di is a vector

qj is a vector

rij ∈ {0,1}

2) A set of queries

3) A binary
assessment of either
✅ Relevant or
❌ Non-Relevant for
each query and each
document

We need 3 things in our benchmark dataset:

Documents Queries Relevance

d1 q1 r11

d1 q2 r12

d1 q3 r13

… … …

D

Activity
With your group,

what are some pros and
cons of measuring

relevance this way?
A binary assessment of
either ✅ Relevant or
❌ Non-Relevant for each
query and each document

Activity
With your group,

find an IR benchmark dataset online.

Relevance

10,000 total docs
40 are ✅ relevant

9,960 are ❌ not relevant

IR Black Box
the algorithm

f(q,d)

Query =
meet me at

midnight

Rankings
1. (some doc)
2. (another doc)
3. …
n. (a doc)

Benchmark
Dataset

✅
❌
…

Measure of IR Algorithm Effectiveness#

The Big Picture

✅

Evaluation Measures*
Precision
Recall
F aka F Score, aka F-1 Score

Precision@k
Recall@k
F@k
NDCG@k

*There are many more evaluation measures!

unranked measures
These measures don’t incorporate the order
of the results. They treat the results like sets.

ranked measures
These measures do (at least in some way)

incorporate the order of the results.

Which is the best rank order?

Precision and Recall

Precision =

Recall =

of retrieved documents that are ✅ relevant

of retrieved documents

of retrieved documents that are ✅ relevant

total # of ✅ relevant documents in the dataset

Example 1: Calculate Precision and Recall for the following query and
document set.

10,000 total docs
40 are ✅ relevant

9,960 are ❌ not relevant

IR Black Box
the algorithm

f(q,d)

Query =
meet me at

midnight
Benchmark

Dataset

50 results are returned
30 results are ✅ relevant

20 results are ❌ not relevant

P = 30/50
R = 30/40

Example 2: Calculate Precision and Recall for the following query and
document set.

40 total docs
17 are ✅ relevant

23 are ❌ not relevant

IR Black Box
the algorithm

f(q,d)

Query =
always rooting

for the
anti-hero

Benchmark
Dataset

12 results are returned
3 results are ✅ relevant

9 results are ❌ not relevant

P = 3/12
R = 3/17

Activity
Can you design a search engine with perfect recall?

Example: Design a search engine with perfect recall.

40 total docs
17 are ✅ relevant

23 are ❌ not relevant

IR Black Box
the algorithm

f(q,d)

Query =
always rooting for the

anti-hero Benchmark
Dataset

40 results are returned
17 results are ✅ relevant

23 results are ❌ not relevant

P = 17/40
R = 17/17

Activity
What are some situations where you might care more
about the Recall of your search engine? Precision?

Combining Precision and Recall: F aka F1 Score
 aka F Score

Precision and Recall tell us different things about the performance of the search engine. So, F Score
is a good way to quickly understand the overall performance, because it incorporates both of them!

Let’s do some examples w/ the arithmetic
mean vs. the harmonic mean:
If P=0.9 and R=0.1 (very different):

MA=(0.9+0.1)/2 = 0.5
MH= (2*0.9*0.1)/(0.9+0.1) = 0.18

So if either precision or recall is low, the harmonic mean will also be low.

If P=0.5 and R=0.5 (literally the same):
MA=(0.5+0.5)/2 = 0.5

MH= (2*0.5*0.5)/(0.5+0.5) = 0.5

A generalization of F

Precision@k and Recall@k

Precision =

Recall =

of retrieved documents that are ✅ relevant in the top k

k

total # of ✅ relevant documents in the dataset

of retrieved documents that are ✅ relevant in the top k

Example: Calculate Precision@1, Precision@5, and Precision@10 for the
following query and document set.

40 total docs
17 are ✅ relevant

23 are ❌ not relevant

IR Black Box
the algorithm

f(q,d)

Query =
always rooting for the

anti-hero Benchmark
Dataset

12 results are returned:
1. ✅ relevant
2. ❌ not relevant
3. ❌ not relevant
4. ✅ relevant
5. ❌ not relevant
6. ❌ not relevant
7. ❌ not relevant
8. ✅ relevant
9. ❌ not relevant

10. ❌ not relevant
11. ❌ not relevant
12. ❌ not relevant

k=1

k=5

k=10

P@1 = 1/1
R@1 = 1/17

P@5 = 2/5
R@5 = 2/17

P@10 = 3/10
R@10 = 3/17

Activity
Overall, what do you like/not like

about Precision and Recall?
Some questions to consider: When might they be super good/informative

metrics? When are they not that helpful?

NDCG

Normalized Discounted Cumulative Gain
Sensitive to the position of the highest rated page
Log-discounting of results
Normalized for different lengths lists

Very popular in practice

Measuring Relevance: NDCG Edition!

English Math Picture
1) A set of documents

D = {(di, qj, rij)}

di is a vector

qj is a vector

rij ∈ {0,1,2,3}

2) A set of queries

3) An assessment of
the relevance for
each query and each
document:

0 Not relevant

1 Somewhat relevant

2 Really relevant

3 Perfectly relevant

We need 3 things in our benchmark dataset:

Documents Queries Relevance

d1 q1 r11

d1 q2 r12

d1 q3 r13

… … …

D

NDCG

n is for
normalized

p is for position, and it’s
the same thing as k, the #
of positions returned from
the algorithm that we
consider!

Remember this?

Easy place to make a
mistake! Just write it out :)
20=1 and log2(1)=0
21=2 and log2(2)=1
22=4 and log2(4)=2
23=8 and log2(8)=3
In my brain, I write out the

left column, then I say “take
log base 2 of both sides”

Let’s analyze the numerator with an example: Let’s consider what
happens if the 1st position (i=1) has different relevance scores:
If rel1=3 : 23-1 = 8-1 = 7
If rel1=2 : 22-1 = 4-1 = 3
If rel1=1 : 21-1 = 2-1 = 1
If rel1=0 : 20-1 = 1-1 = 0

Let’s analyze the denominator with an example: Let’s consider what
happens based on which position (i) we are calculating for:
If i=1 : log2(1+1) = log2(2) = 1
If i=2 : log2(2+1) = log2(3) = 1.58-ish
If i=3 : log2(3+1) = log2(4) = 2
If i=4 : log2(4+1) = log2(5) = 2.32-ish

So, the better relevance
score you have, the more

points you get in the
numerator!

So the DCG scores are
penalized based on rank!

cumulative

gain

discounting!

DCG: Example
q = meet

me at
midnight

1.

2.

3.

4.

1

0

0

3

Ideal DCG
For a query, what is the best possible set of ranked
results (set of docs & their relevance values) we could
return from our benchmark dataset?

In practice, our search engine super-probably-most-likely
CAN’T achieve this (it would have to be literally perfect), but we can look in
our benchmark dataset as an “oracle” to
identify possible set of ranked results (set of docs &
their relevance values)!

Ideal DCG
Some queries are “easy” → there are lots of great
documents for it in the benchmark dataset

Other queries are “hard” → even in the best case,
there are not many good documents for it in the
benchmark dataset

NDCG normalizes for these different scenarios

IDCG: Example
q = meet

me at
midnight

1.

2.

3.

4.

3

2

2

0

Putting it all together …

