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✅ relevant search results = 
but more importantly,

People getting access to the 
information they need.
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The importance of evaluation

The ability to measure differences 📐 underlies 
experimental science 󰟾

How well do our systems work?
Is Algorithm A better than Algorithm B?
Really? Under what conditions?

Evaluation drives: WHAT to research
Identify techniques that work and that don’t



Measuring Relevance

English Math Picture
1) A set of documents

D = {(di, qj, rij)}

di is a vector

qj is a vector

rij ∈ {0,1}

2) A set of queries

3) A binary 
assessment of either 
✅ Relevant or          
❌ Non-Relevant for 
each query and each 
document

We need 3 things in our benchmark dataset:

Documents Queries Relevance

d1 q1 r11

d1 q2 r12

d1 q3 r13

… … …

D



Activity
With your group,

what are some pros and 
cons of measuring 

relevance this way?
A binary assessment of 
either ✅ Relevant or          
❌ Non-Relevant for each 
query and each document



Activity
With your group,

find an IR benchmark dataset online.



Relevance

10,000 total docs
40 are ✅ relevant

9,960 are ❌ not relevant

IR Black Box
the algorithm

f(q,d)

Query = 
meet me at 

midnight

Rankings
1. (some doc)
2. (another doc)
3. …
n. (a doc)

Benchmark 
Dataset

✅
❌
…

Measure of IR Algorithm Effectiveness#

The Big Picture

✅



Evaluation Measures*
Precision
Recall
F aka F Score, aka F-1 Score

Precision@k
Recall@k
F@k
NDCG@k

*There are many more evaluation measures!

unranked measures
These measures don’t incorporate the order 
of the results. They treat the results like sets. 

ranked measures
These measures do (at least in some way) 

incorporate the order of the results. 



Which is the best rank order?



Precision and Recall

Precision = 

Recall = 

# of retrieved documents that are ✅ relevant 

# of retrieved documents

# of retrieved documents that are  ✅ relevant 

total # of ✅ relevant documents in the dataset



Example 1: Calculate Precision and Recall for the following query and 
document set. 

10,000 total docs
40 are ✅ relevant

9,960 are ❌ not relevant

IR Black Box
the algorithm

f(q,d)

Query = 
meet me at 

midnight
Benchmark 

Dataset

50 results are returned
30 results are ✅ relevant

20 results are ❌ not relevant

P = 30/50
R = 30/40



Example 2: Calculate Precision and Recall for the following query and 
document set. 

40 total docs
17 are ✅ relevant

23 are ❌ not relevant

IR Black Box
the algorithm

f(q,d)

Query = 
always rooting 

for the 
anti-hero

Benchmark 
Dataset

12 results are returned
3 results are ✅ relevant

9 results are ❌ not relevant

P = 3/12
R = 3/17



Activity
Can you design a search engine with perfect recall?



Example: Design a search engine with perfect recall.

40 total docs
17 are ✅ relevant

23 are ❌ not relevant

IR Black Box
the algorithm

f(q,d)

Query = 
always rooting for the 

anti-hero Benchmark 
Dataset

40 results are returned
17 results are ✅ relevant

23 results are ❌ not relevant

P = 17/40
R = 17/17



Activity
What are some situations where you might care more 
about the Recall of your search engine? Precision?



Combining Precision and Recall: F aka F1 Score
 aka F Score

Precision and Recall tell us different things about the performance of the search engine. So, F Score 
is a good way to quickly understand the overall performance, because it incorporates both of them!

Let’s do some examples w/ the arithmetic 
mean vs. the harmonic mean:
If P=0.9 and R=0.1 (very different): 

MA=(0.9+0.1)/2 = 0.5
MH= (2*0.9*0.1)/(0.9+0.1) = 0.18

So if either precision or recall is low, the harmonic mean will also be low.

If P=0.5 and R=0.5 (literally the same): 
MA=(0.5+0.5)/2 = 0.5

MH= (2*0.5*0.5)/(0.5+0.5) = 0.5



A generalization of F



Precision@k and Recall@k

Precision = 

Recall = 

# of retrieved documents that are ✅ relevant in the top k 

k

total # of ✅ relevant documents in the dataset

# of retrieved documents that are ✅ relevant in the top k 



Example: Calculate Precision@1, Precision@5, and Precision@10 for the 
following query and document set. 

40 total docs
17 are ✅ relevant

23 are ❌ not relevant

IR Black Box
the algorithm

f(q,d)

Query = 
always rooting for the 

anti-hero Benchmark 
Dataset

12 results are returned:
1. ✅ relevant
2. ❌ not relevant
3. ❌ not relevant
4. ✅ relevant
5. ❌ not relevant
6. ❌ not relevant
7. ❌ not relevant
8. ✅ relevant
9. ❌ not relevant

10. ❌ not relevant
11. ❌ not relevant
12. ❌ not relevant

k=1

k=5

k=10

P@1 = 1/1
R@1 = 1/17

P@5 = 2/5
R@5 = 2/17

P@10 = 3/10
R@10 = 3/17



Activity
Overall, what do you like/not like 

about Precision and Recall? 
Some questions to consider: When might they be super good/informative 

metrics? When are they not that helpful?



NDCG

Normalized Discounted Cumulative Gain
Sensitive to the position of the highest rated page
Log-discounting of results
Normalized for different lengths lists

Very popular in practice



Measuring Relevance: NDCG Edition!

English Math Picture
1) A set of documents

D = {(di, qj, rij)}

di is a vector

qj is a vector

rij ∈ {0,1,2,3}

2) A set of queries

3) An assessment of 
the relevance for 
each query and each 
document:

0 Not relevant

1 Somewhat relevant

2 Really relevant

3 Perfectly relevant

We need 3 things in our benchmark dataset:

Documents Queries Relevance

d1 q1 r11

d1 q2 r12

d1 q3 r13

… … …

D



NDCG

n is for 
normalized

p is for position, and it’s 
the same thing as k, the # 
of positions returned from 
the algorithm that we 
consider!

Remember this?



Easy place to make a 
mistake! Just write it out :) 
20=1 and log2(1)=0
21=2 and log2(2)=1
22=4 and log2(4)=2
23=8 and log2(8)=3
In my brain, I write out the 

left column, then I say “take 
log base 2 of both sides”

Let’s analyze the numerator with an example: Let’s consider what 
happens if the 1st position (i=1) has different relevance scores:
If rel1=3 : 23-1 = 8-1 = 7
If rel1=2 : 22-1 = 4-1 = 3
If rel1=1 : 21-1 = 2-1 = 1
If rel1=0 : 20-1 = 1-1 = 0

Let’s analyze the denominator with an example: Let’s consider what 
happens based on which position (i) we are calculating for:
If i=1 : log2(1+1) = log2(2) = 1
If i=2 : log2(2+1) = log2(3) = 1.58-ish
If i=3 : log2(3+1) = log2(4) = 2
If i=4 : log2(4+1) = log2(5) = 2.32-ish

So, the better relevance 
score you have, the more 

points you get in the 
numerator!

So the DCG scores are 
penalized based on rank!

cumulative

gain

discounting!



DCG: Example
q = meet 

me at 
midnight

1.

2.

3.

4.

1

0

0

3



Ideal DCG
For a query, what is the best possible set of ranked 
results (set of docs & their relevance values) we could 
return from our benchmark dataset?

In practice, our search engine super-probably-most-likely 
CAN’T achieve this (it would have to be literally perfect), but we can look in 
our benchmark dataset as an “oracle” to 
identify possible set of ranked results (set of docs & 
their relevance values)!



Ideal DCG
Some queries are “easy” → there are lots of great 
documents for it in the benchmark dataset

Other queries are “hard” → even in the best case, 
there are not many good documents for it in the 
benchmark dataset

NDCG normalizes for these different scenarios



IDCG: Example
q = meet 

me at 
midnight

1.

2.

3.

4.

3

2

2

0



Putting it all together …


