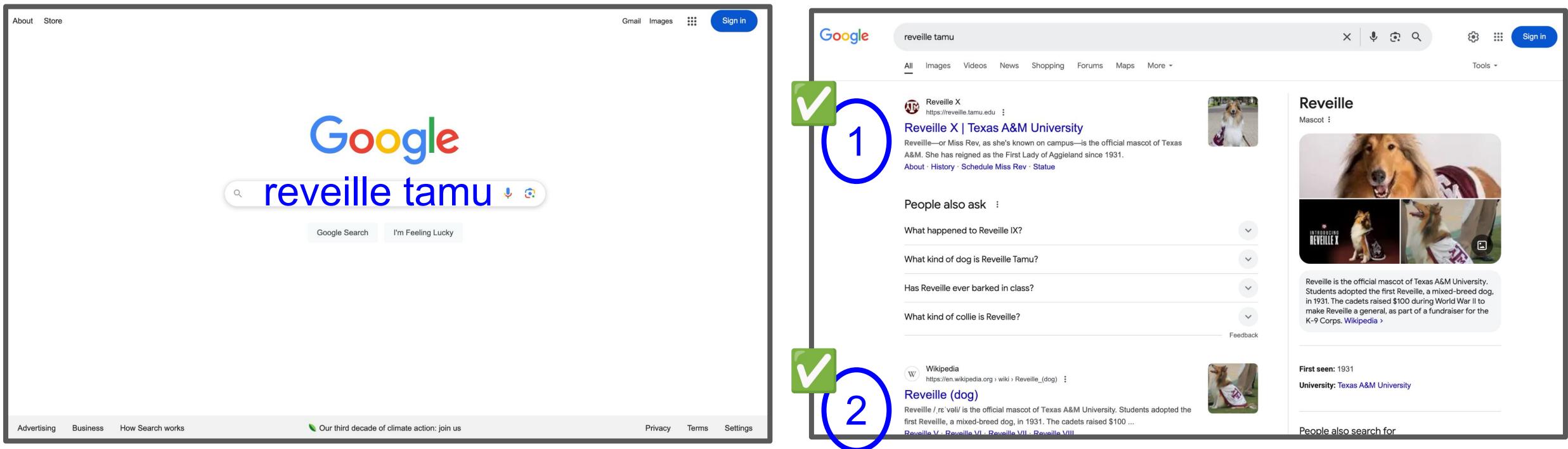
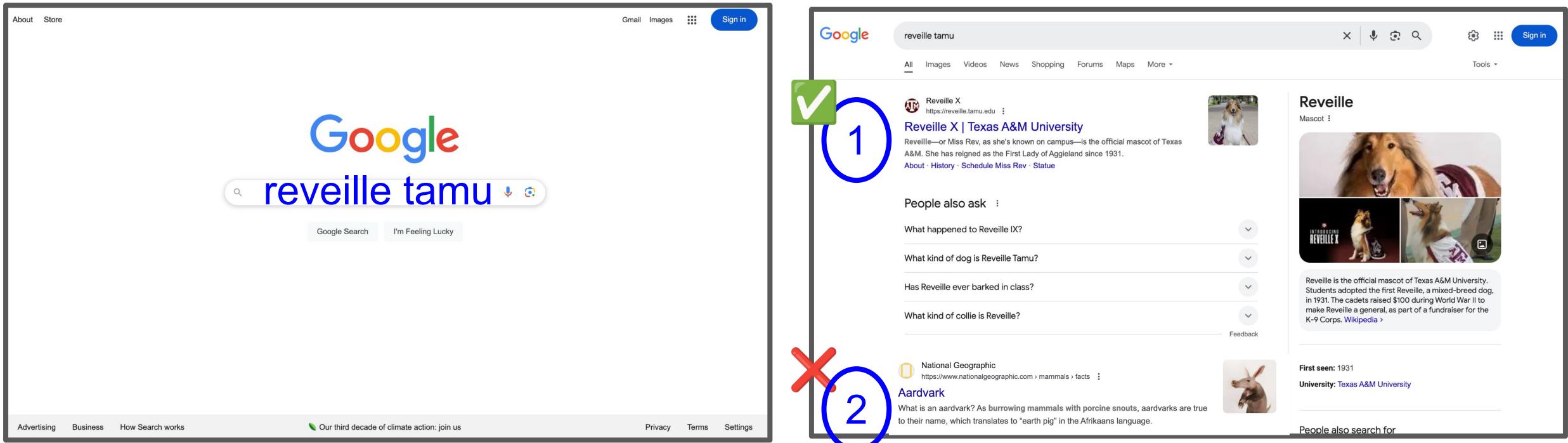
Information Storage & Retrieval Class 6: Evaluation

CSCE 670 :: Spring 2024 **Texas A&M University Department of Computer Science & Engineering** Prof. James Caverlee and Maria Teleki



SEARCH ENGINES

Google returned 2 **relevant results**



SEARCH ENGINES

Google returned: 1 **v** relevant result 1 X non-relevant result

relevant search results =

but more importantly, relevant search results =

signs of a heart attack People getting access to the information they need.

20 how go tu college

how to invest

how to tell if email is a scam

what is a 401k

how

how to Perform CPR

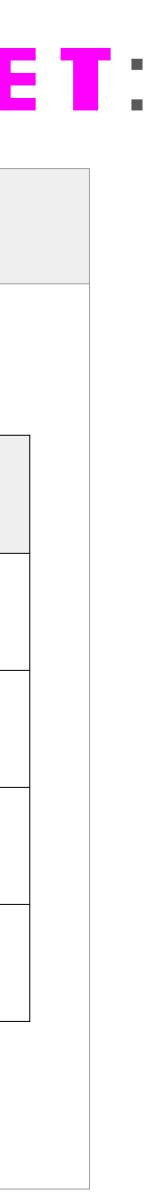
The importance of evaluation

The ability to measure differences (), underlies experimental science How well do our systems work? Is Algorithm A better than Algorithm B? Really? Under what conditions? Evaluation drives: WHAT to research

Identify techniques that work and that don't

Measuring Relevance We need 3 things in our BENCHMARK DATASET: English **Picture** Math 1) A set of documents 2) A set of queries $D = \{(d_i, q_i, r_{ii})\}$ d, is a vector 3) A binary assessment of either q is a vector **Relevant** or **Non-Relevant** for $r_{ii} \in \{0, 1\}$ each query and each document

Documents	Queries	Relevance
d ₁	q ₁	r 11
d ₁	q ₂	۲ ₁₂
d ₁	Q ₃	r 13



Activity With your group, what are some pros and cons of measuring relevance this way?

A binary assessment of either Relevant or Non-Relevant for each query and each document

Activity With your group, find an IR BENCHMARK DATASET ONline.

We need 3 things in our **BENCHMARK DATASET**:

English

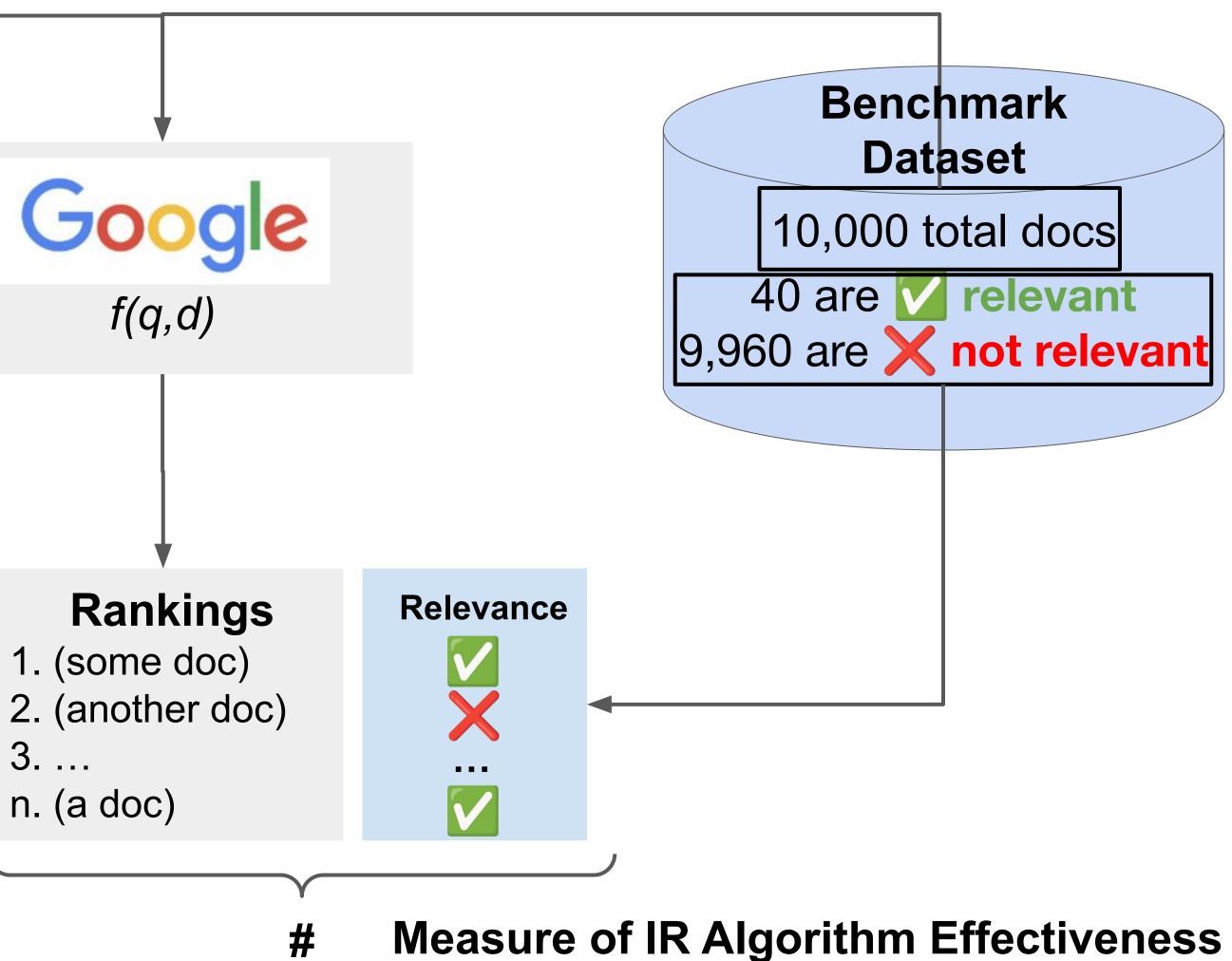
- 1) A set of documents
- 2) A set of queries

3) A binary assessment of either **Relevant** or X Non-Relevant for each query and each document

Math	Picture		
	D		
$D = \{(d \ a \ r)\}$	Documents	Queries	Relevance
<pre>D = {(d_i, q_j, r_{ij})} d_i is a vector q_j is a vector</pre>	d ₁	Q ₁	r ₁₁
	d ₁	q ₂	r ₁₂
	d ₁	q ₃	r ₁₃
r _{ij} ∈ { <mark>0</mark> ,1}			

The Big Picture

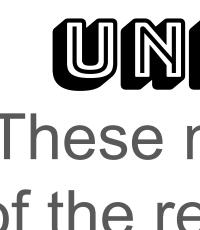
Query = meet me at midnight



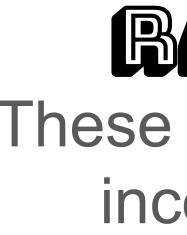
Evaluation Measures*

Precision Recall

aka F Score, aka F-1 Score



Precision@k Recall@k NDCG@k



*There are many more evaluation measures!

UNRANKED MEASURES

These measures don't incorporate the order of the results. They treat the results like sets.

RANKED MEASURES These measures do (at least in some way)

incorporate the order of the results.

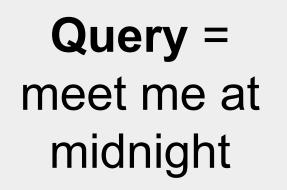
Which is the best rank order? if orange = YES relevant Α. В. green = NOT C. relevant D. Ε. F. 12345...

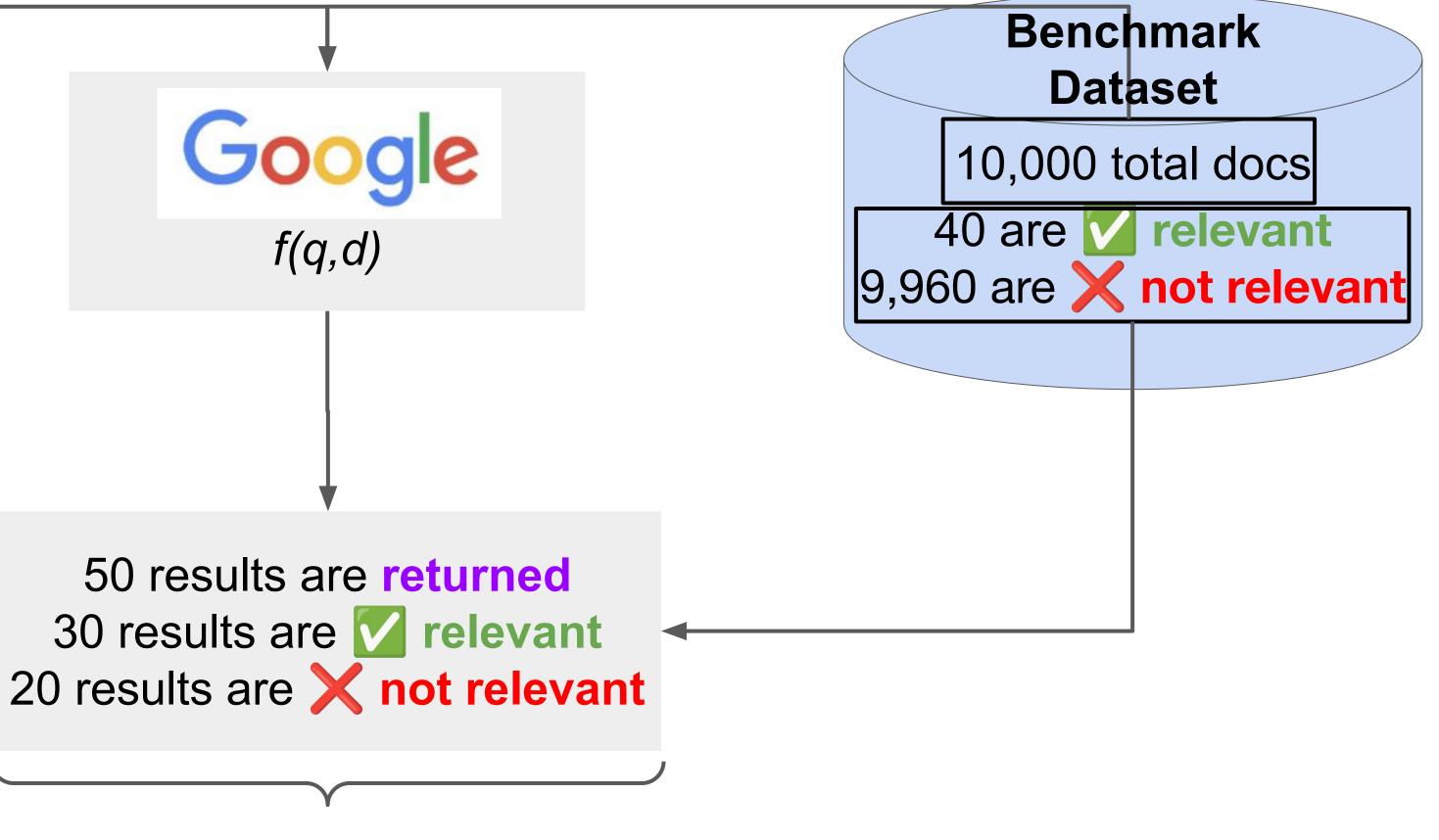
Precision and Recall

of retrieved documents that are V relevant Precision = **# of retrieved documents**

of retrieved documents that are V relevant Recall =total # of v relevant documents in the dataset

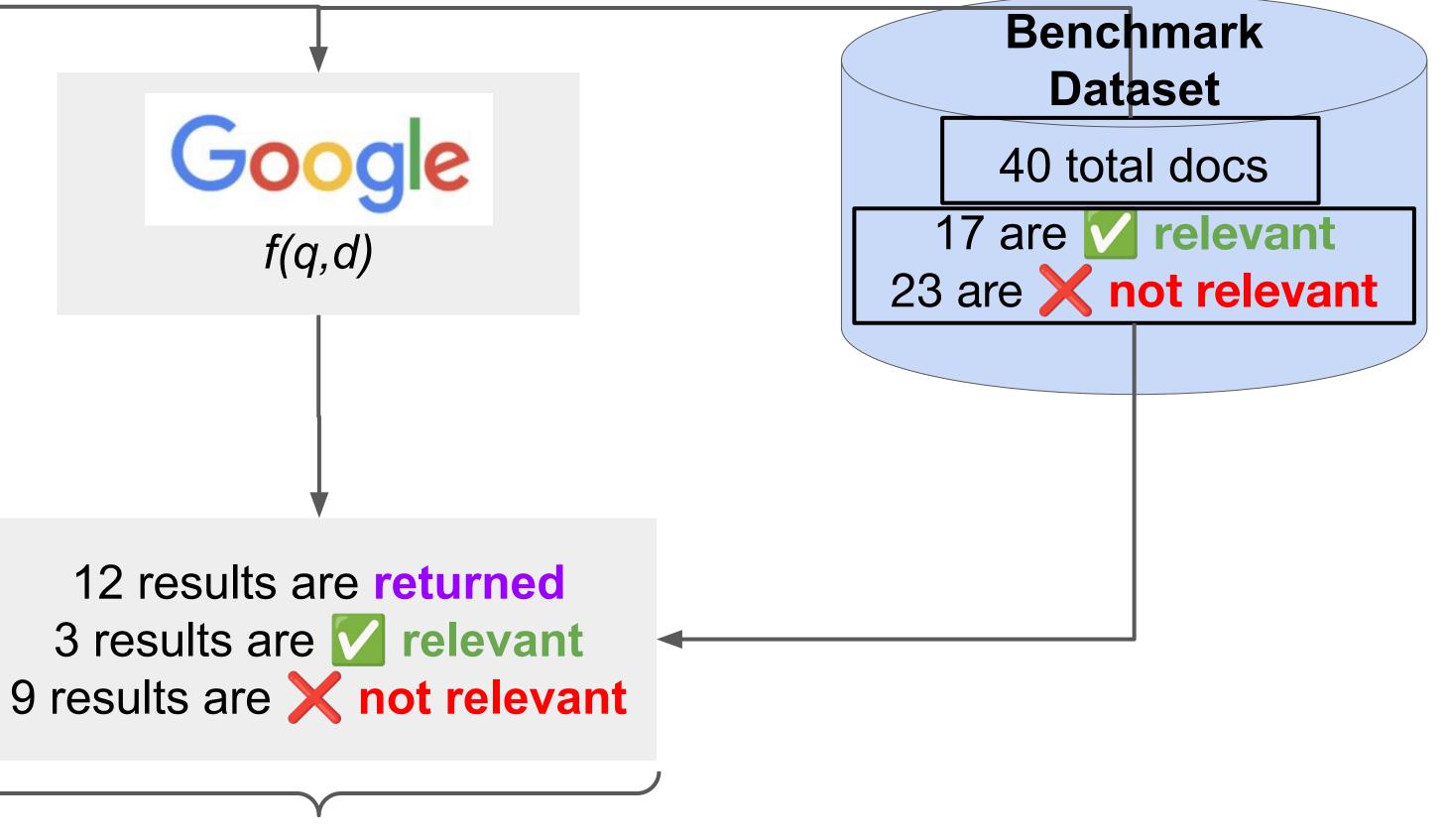
Example 1: Calculate Precision and Recall for the following query and document set.



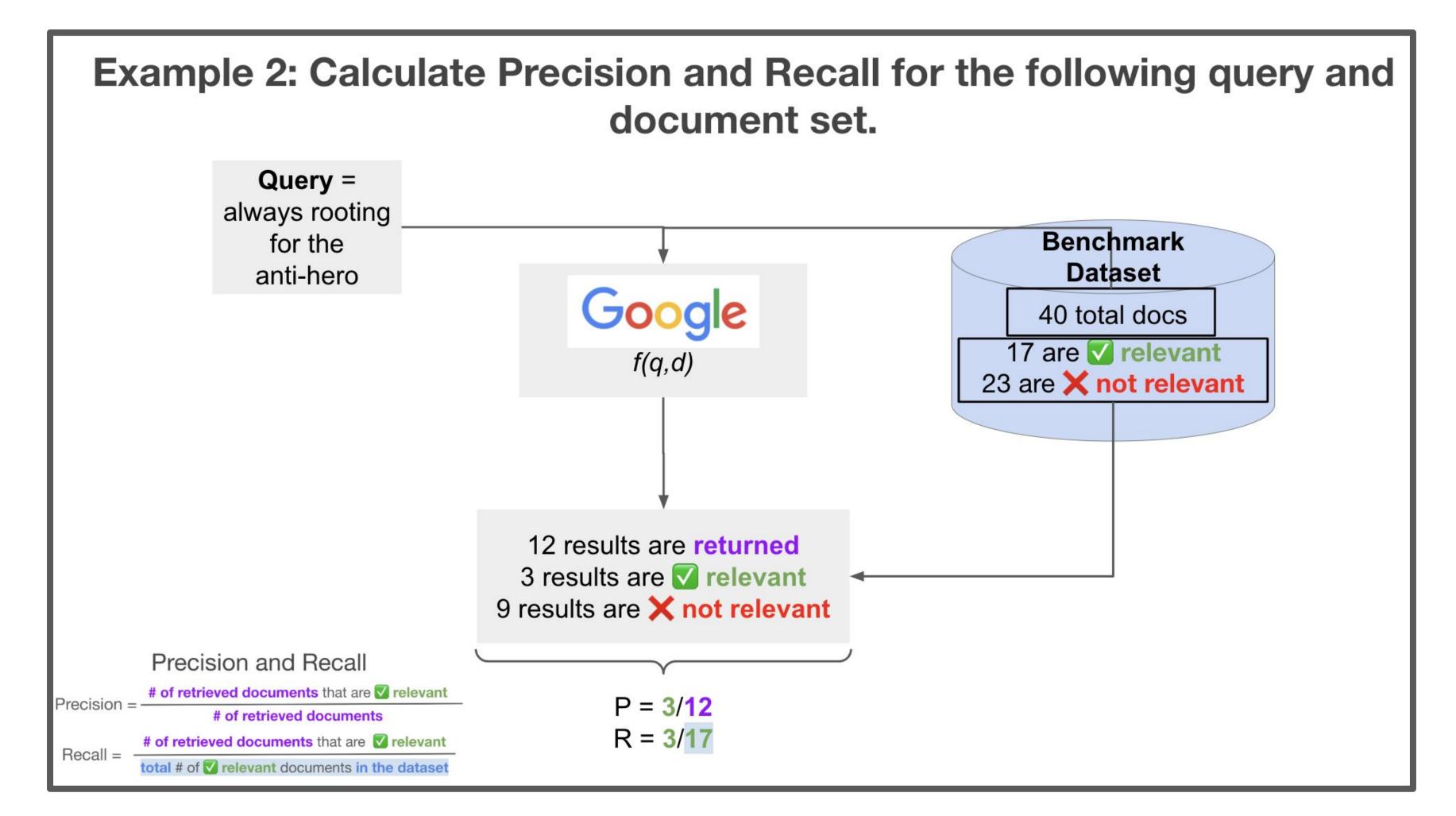


Example 2: Calculate Precision and Recall for the following query and document set.

Query = always rooting for the anti-hero

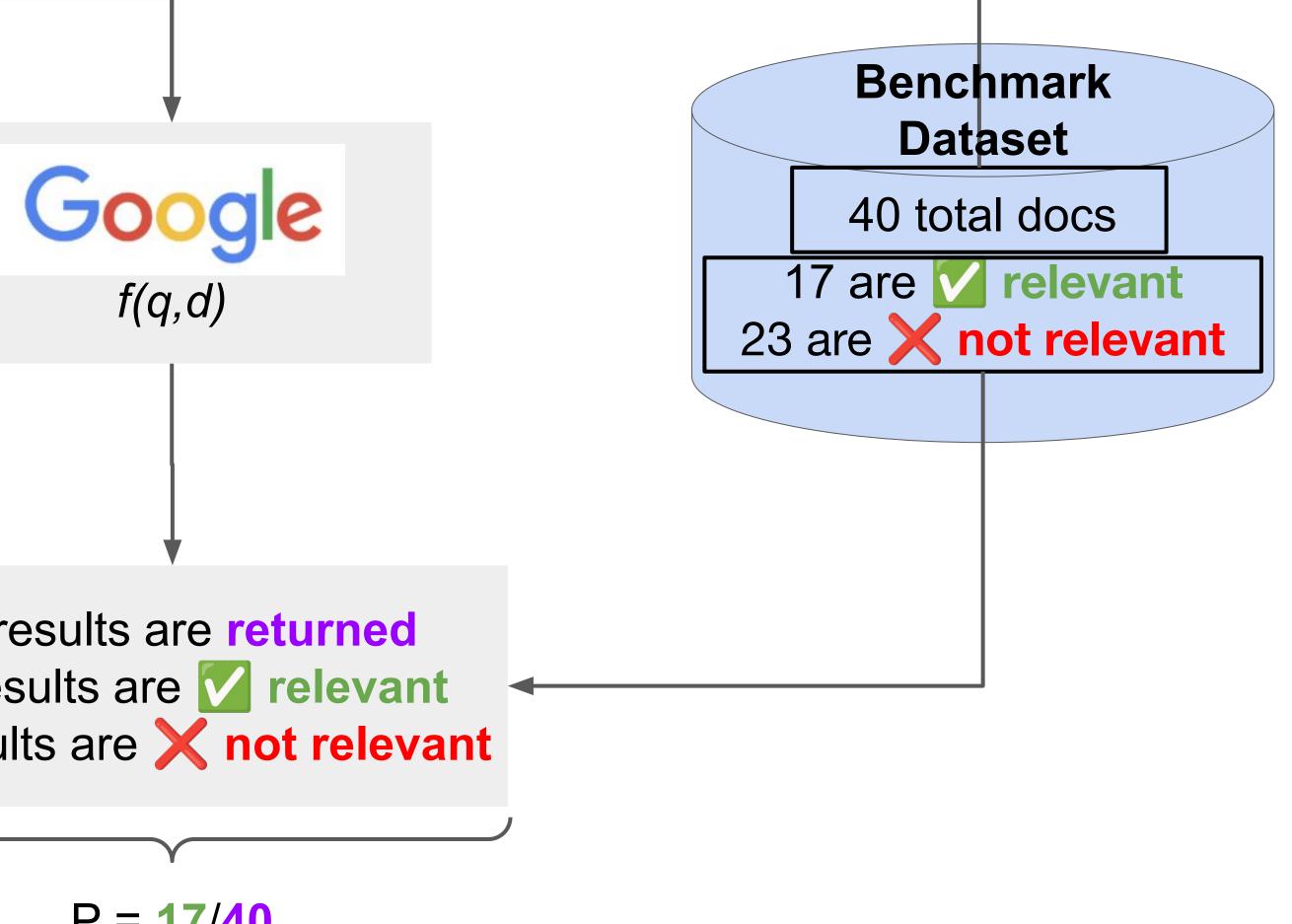


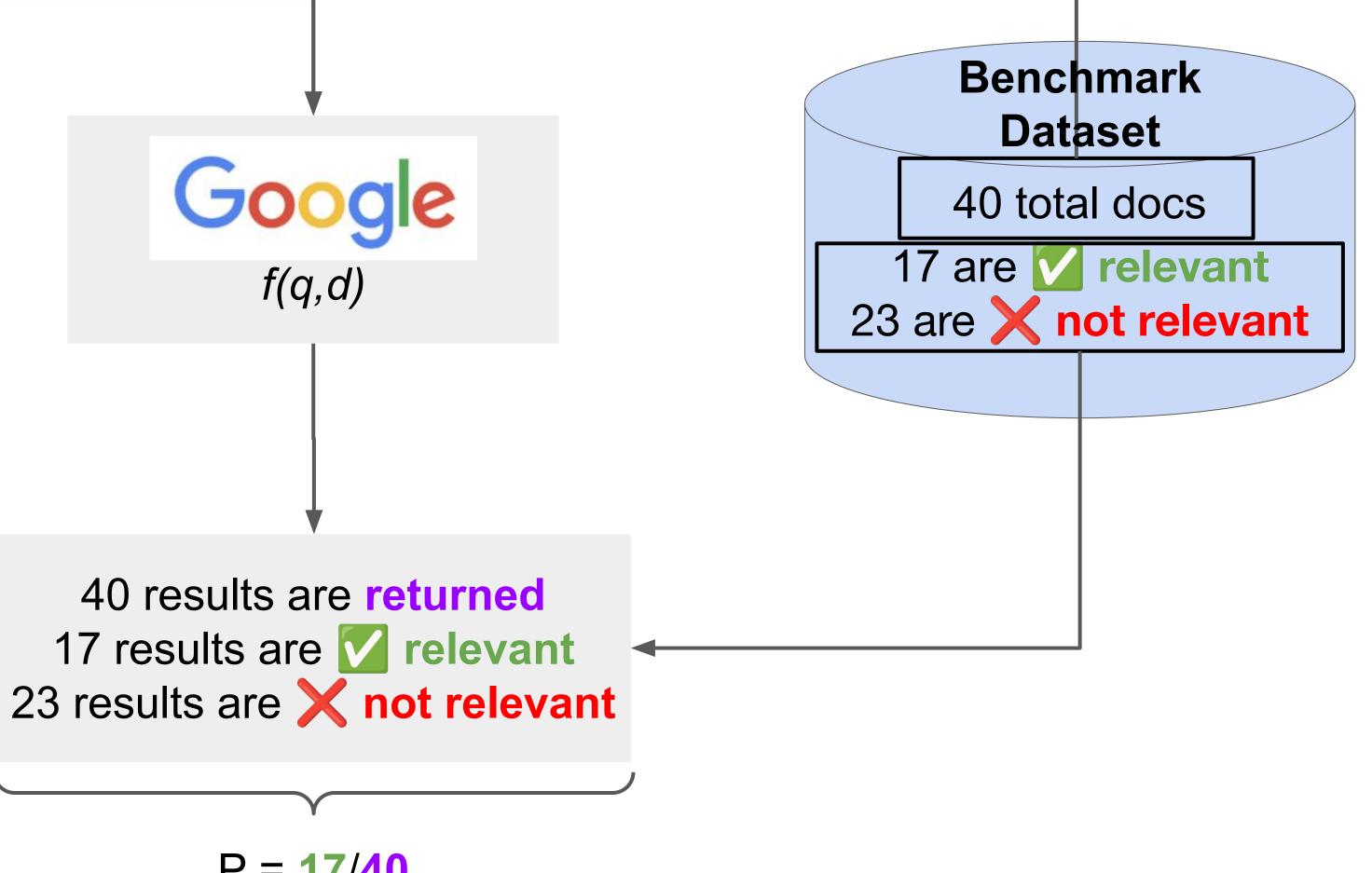
Activity Can you design a search engine with perfect recall?



Example: Design a search engine with perfect recall.

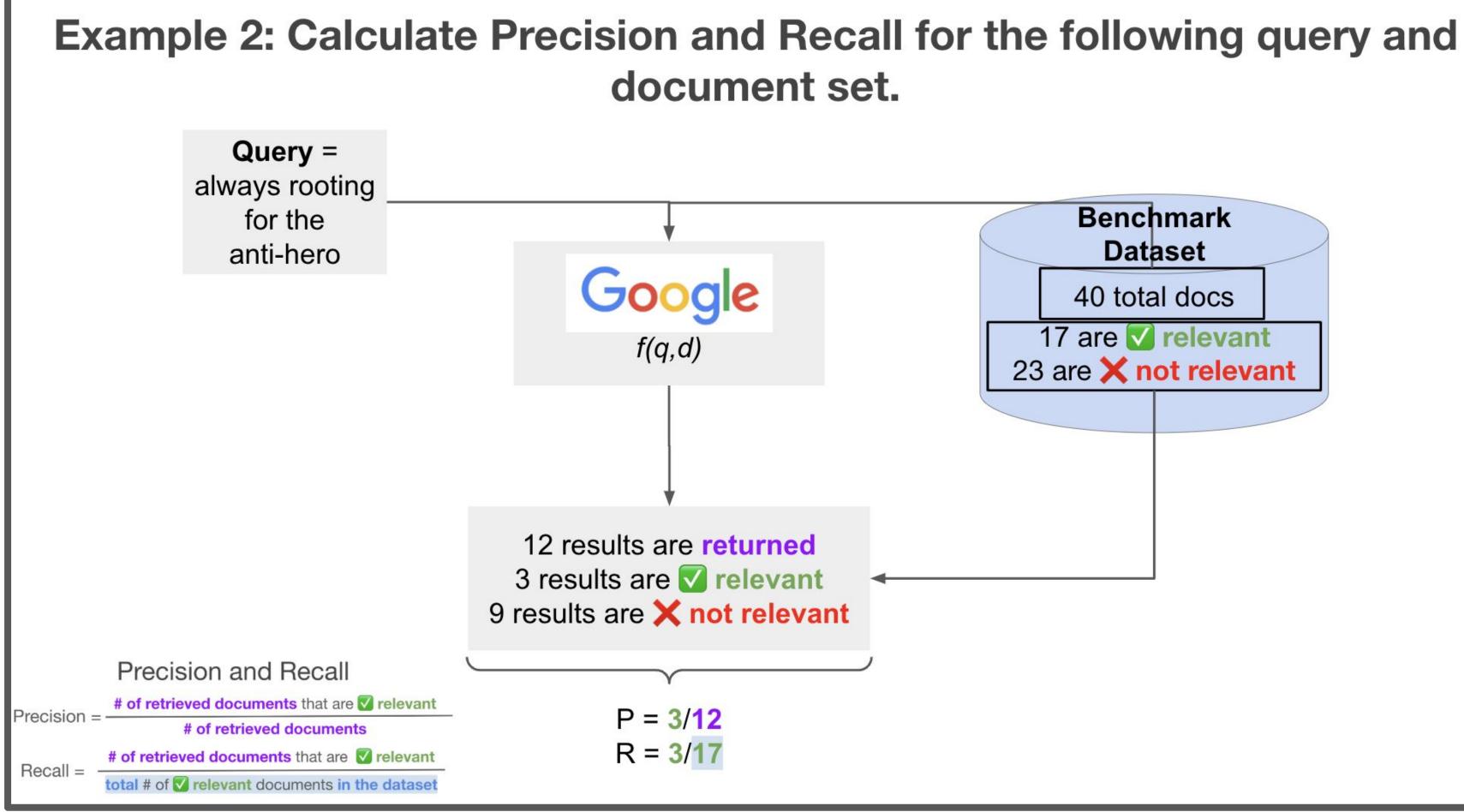
Query = always rooting for the anti-hero





P = 17/40R = 17/17

Activity What are some situations where you might care more about the Recall of your search engine? Precision?



aka F1 Score Combining Precision and Recall: F aka F Score

Precision and Recall tell us different things about the performance of the search engine. So, F Score is a good way to quickly understand the overall performance, because it incorporates both of them!

Measures of Central Tendency for $X_{11}X_{2}, X_{3}, ..., X_n$ positive #s, we can Calculate a few different types of equally weighted averages. The 3 Classical Pythagorean Means Geometric Harmonic Arithmetic Mean Mean Mean $M_{H} =$ $M_{A}=$ $M_{G} =$ X1+X2+...+Xn n $X_1 \cdot X_2 \cdot \dots \cdot X_n$ middle smallest biggest mean mean mean for $x_1 = P$, $x_2 = R$: PR 2 PR n M_H = $\frac{1}{P} + \frac{1}{R} = \frac{1}{PR}$ $= \frac{ZPP}{R+P}$

$$F_1 = rac{2}{ ext{recall}^{-1} + ext{precision}^{-1}} = 2rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

Let's do some examples w/ the *arithmetic mean* vs. the *harmonic mean*:

If P=0.9 and R=0.1 (very different): $M_{\Delta} = (0.9 + 0.1)/2 = 0.5$ $M_{H} = (2*0.9*0.1)/(0.9+0.1) = 0.18$ So if either precision or recall is low, the harmonic mean will also be low.

> If P=0.5 and R=0.5 (literally the same): $M_{\Delta} = (0.5 + 0.5)/2 = 0.5$ $M_{H} = (2*0.5*0.5)/(0.5+0.5) = 0.5$

Ageneralization of F

Measures of Central Tendency for X1, Xz, X3,..., Xn positive #5, we can Calculate a few different types of equally Weighted averages:

The 3 Classical Pythagorean Means

Arithmetic Mean	Geometric Mean	Harmonic Mean
$\frac{M_{A}}{x_{1}+x_{2}++x_{n}}$	$M_{G} = \frac{1}{\sqrt{X_{1} \cdot X_{2} \cdot \dots \cdot X_{n}}}$	$M_{H} = \frac{n}{\frac{1}{x_{1}} + \frac{1}{x_{2}} + \dots + \frac{1}{x_{n}}}$
for $x_1 = P_1 \times_z =$	middle mean = R:	smallest mean
$M_{H} = \frac{n}{\frac{1}{x_{1}} + \frac{1}{x_{2}} + \dots + \frac{1}{x_{2}}}$	$=$ $\frac{2}{1}$ $\frac{PF}{PF}$	$\frac{ZPR}{P} = \frac{ZPR}{\frac{PR}{P} + \frac{PR}{P}}$
		$= \frac{ZPP}{R+P}$

$F_eta = (1+eta^2) \cdot rac{ ext{precision} \cdot ext{recall}}{(eta^2 \cdot ext{precision}) + ext{recall}}$

Precision@k and Recall@k

of retrieved documents that are V relevant in the top k Precision =

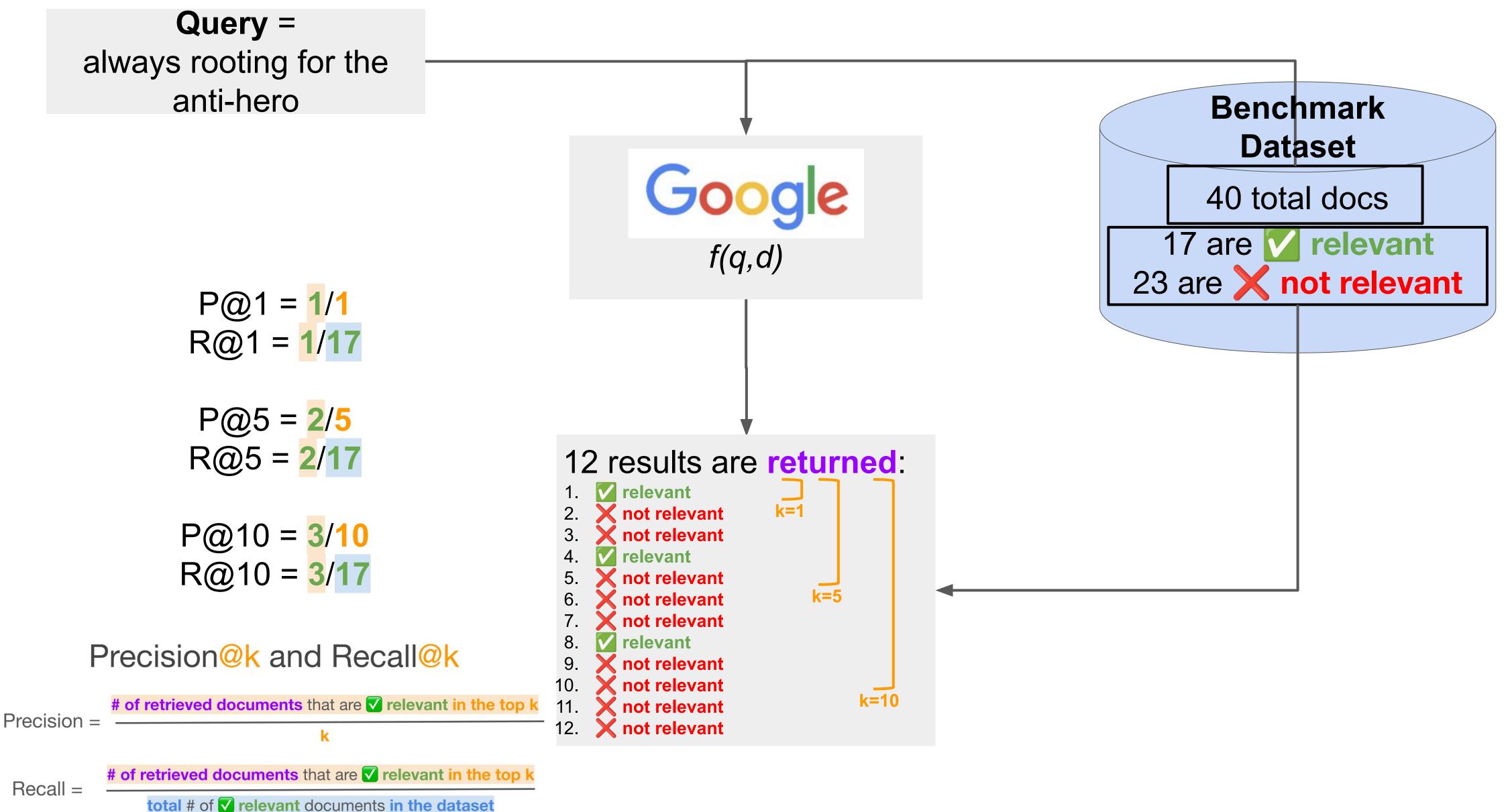
Recall =

of retrieved documents that are V relevant in the top k

total # of V relevant documents in the dataset

k

Example: Calculate Precision@1, Precision@5, and Precision@10 for the following query and document set.



Activity Overall, what do you like/not like about Precision and Recall?

Some questions to consider: When might they be super good/informative metrics? When are they not that helpful?

Normalized Discounted Cumulative Gain Sensitive to the **position** of the highest rated page Log-discounting of results **Normalized** for different lengths lists

Very popular in practice

NDCG

Measuring Relevance: NDCG Edition! We need 3 things in our BENCHMARK DATASET:

English

1) A set of documents

2) A set of queries

3) An assessment of the relevance for each query and each document:

- 0 Not relevant
- **1** Somewhat relevant
- 2 Really relevant
- 3 Perfectly relevant

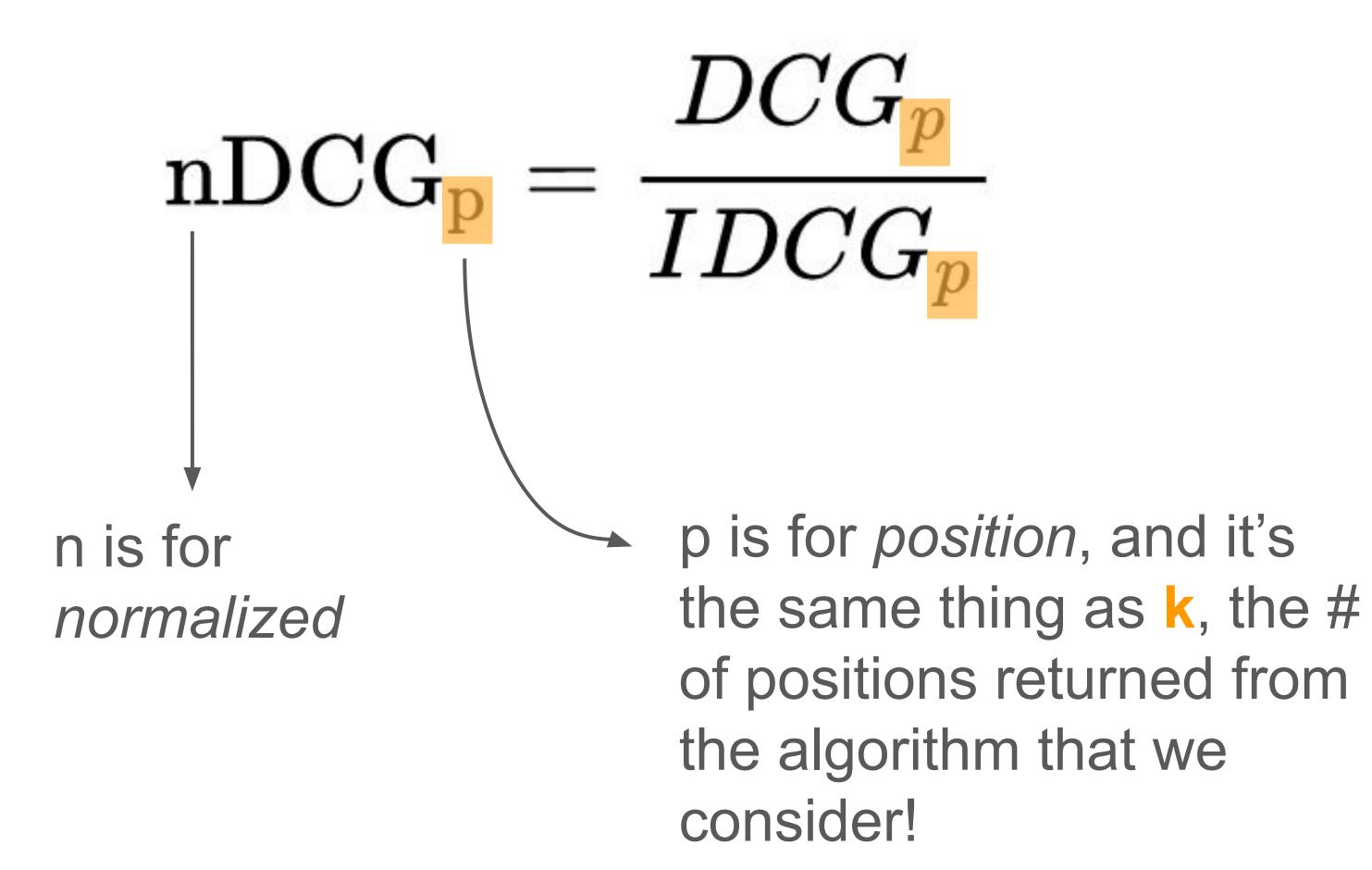
Math

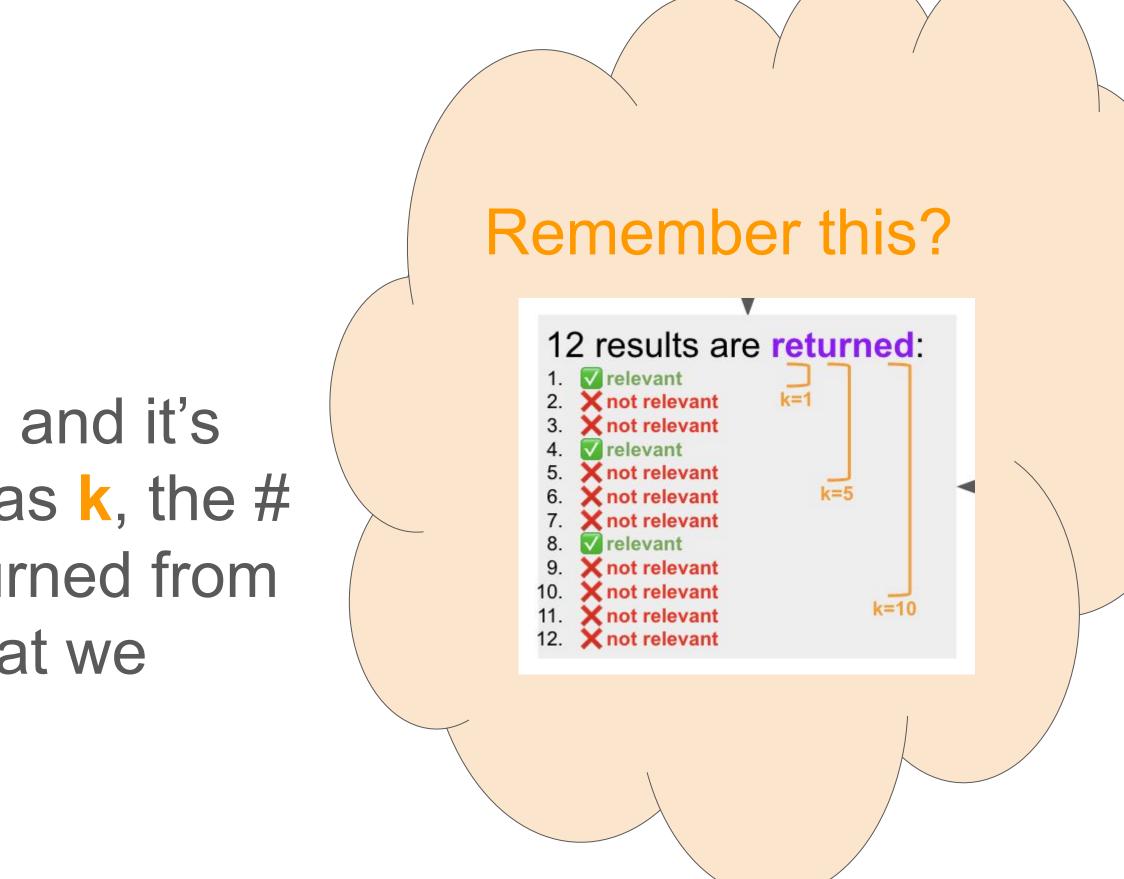
Picture

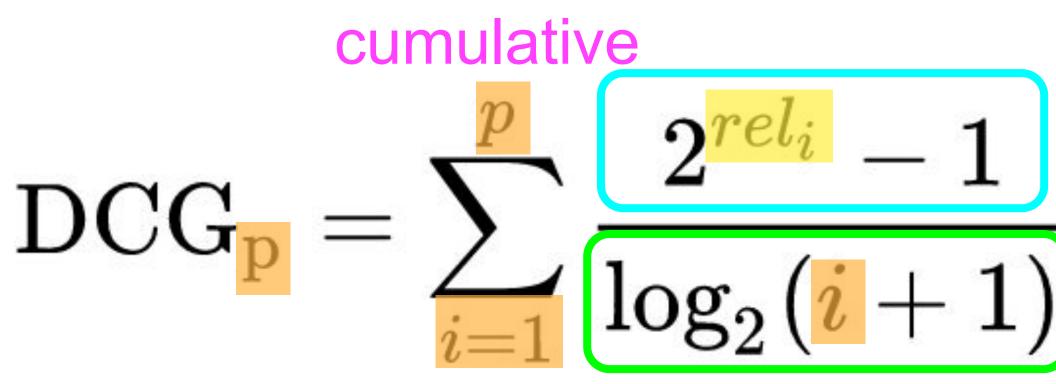
 $D = \{(d_i, q_i, r_{ij})\}$ d_i is a vector q_i is a vector $r_{ii} \in \{0, 1, 2, 3\}$

Documents	Queries	Relevance
d ₁	q ₁	r ₁₁
d ₁	q ₂	r ₁₂
d ₁	q ₃	r ₁₃

NDCG







Let's analyze the numerator with an example: Let's consider what happens if the 1st position (i=1) has different relevance scores:

$lf rel_{1}=3: 2^{3}-1=8-1=7$	
$lf rel = 2: 2^2 - 1 = 4 - 1 = 3$	So, the bett score you h
$lf rel = 1 : 2^{1} - 1 = 2 - 1 = 1$	points yo
$lf rel_{1}=0: 2^{0}-1 = 1-1 = 0$	num

Let's analyze the denominator with an example: Let's consider what happens based on which position (i) we are calculating for: If i=1: $\log_2(1+1) = \log_2(2) = 1$ *If* i=2 : $\log_2(2+1) = \log_2(3) = 1.58$ -ish $If i=3 : \log_2(3+1) = \log_2(4) = 2$ *If* i=4 : $\log_2(4+1) = \log_2(5) = 2.32$ -ish

gain discountina!

tter relevance nave, the more ou get in the nerator!

So the DCG scores are penalized based on rank!

Easy place to make a mistake! Just write it out :) $2^{0}=1$ and $\log_{2}(1)=0$ $2^{1}=2$ and $\log_{2}(2)=1$ $2^2=4$ and $\log_2(4)=2$ $2^3 = 8$ and $\log_2(8) = 3$

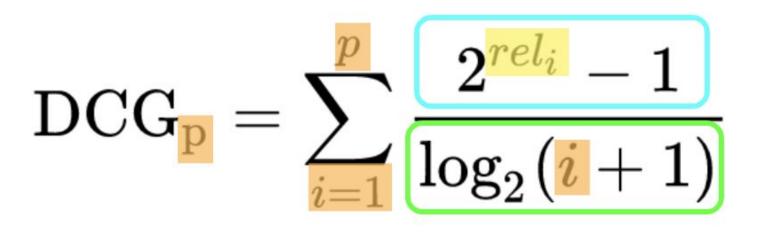
In my brain, I write out the left column, then I say "take log base 2 of both sides"

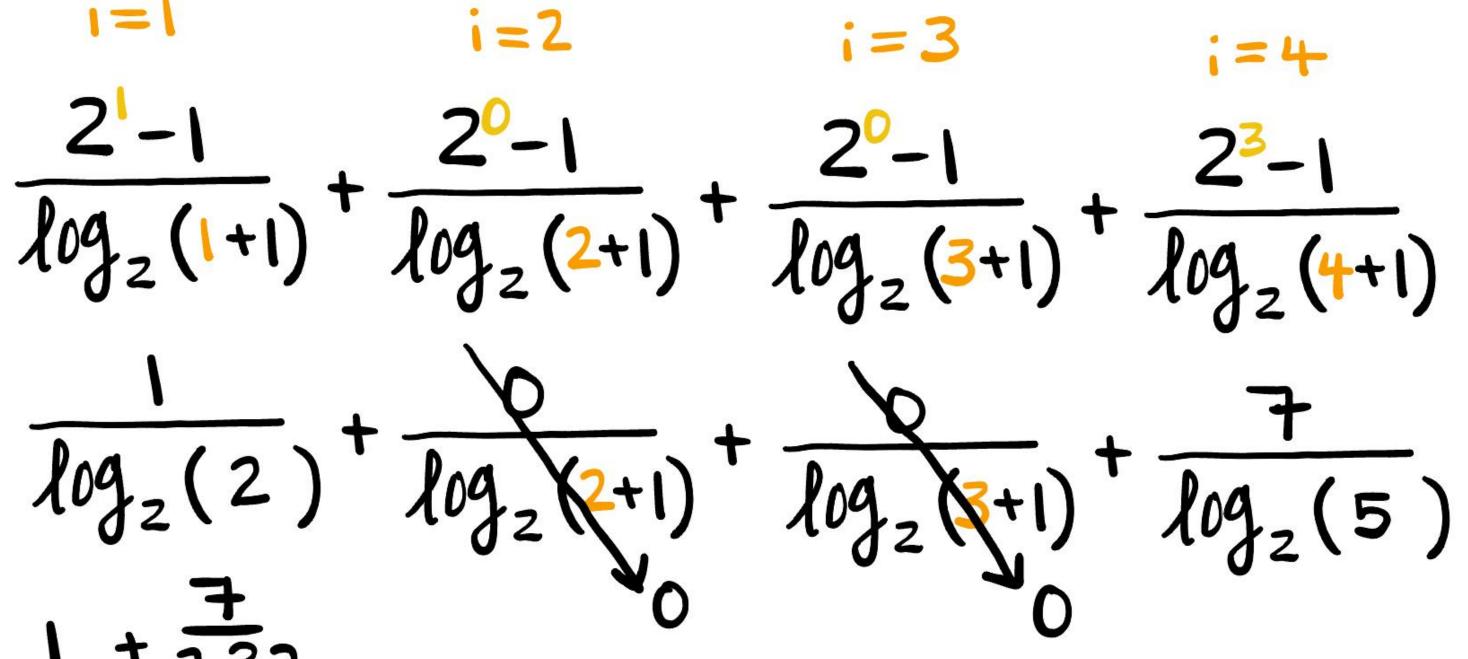
TON

TOW

DCG: Example q = meetme at i=1 midnight 2'-1 DCG₄ 0 $log_{z}(2)$ **NO** 0 $+\frac{1}{2.32}$ 3

4.02





Ideal DCG

return from our BENCHMARK DATASET?

OUT BENCHMARK DATASET as an "Oracle" to their relevance values)!

For a query, what is the best possible set of ranked results (set of docs & their relevance values) we could

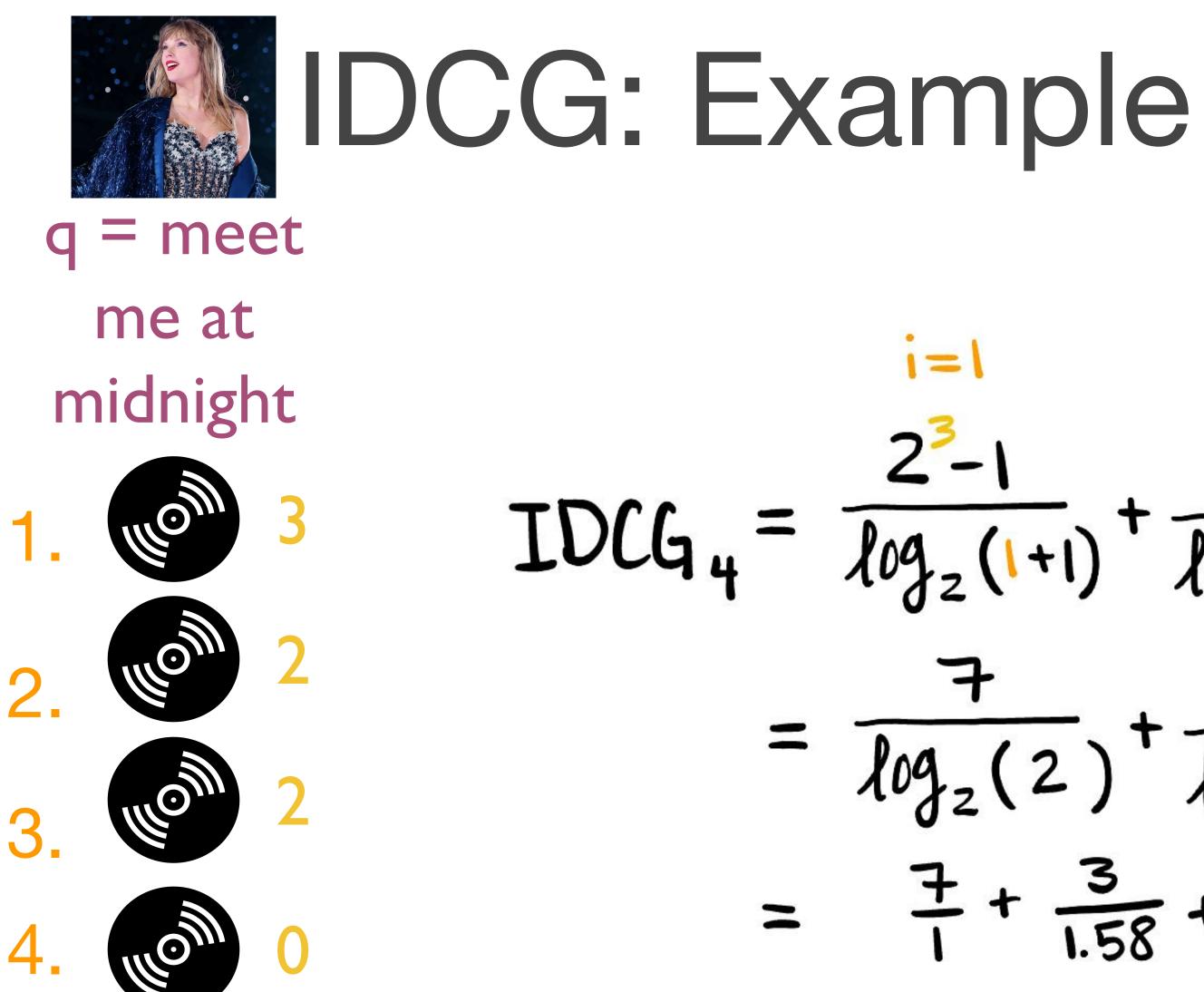
In practice, our search engine super-probably-most-likely CAN'T achieve this (it would have to be literally perfect), but we can look in identify possible set of ranked results (set of docs &

Ideal DCG

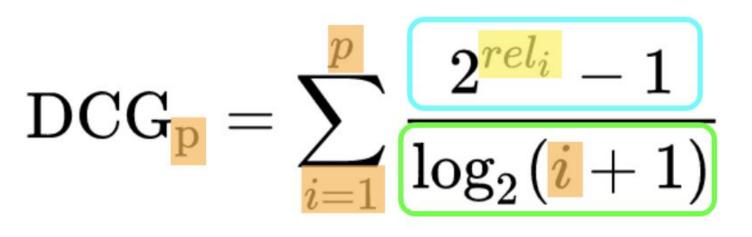
BENCHMARK DATASET

NDCG normalizes for these different scenarios

- Some queries are "easy" \rightarrow there are lots of great documents for it in the BENCHMARK DATASET
- Other queries are "hard" \rightarrow even in the best case, there are not many good documents for it in the



= 10.80



$$\frac{i=2}{l_{r1}} + \frac{2^{2}-1}{l_{0}g_{z}(2+1)} + \frac{2^{2}-1}{l_{0}g_{z}(3+1)} + \frac{2^{0}-1}{l_{0}g_{z}(3+1)} + \frac{2^{0}-1}{l_{0}g_{z}(3+1)}$$

$$= \frac{1}{2} + \frac{3}{l_{0}g_{z}(2+1)} + \frac{3}{l_{0}g_{z}(3+1)} + \frac{3}{l_{0}g_{z}(3+1)} + \frac{3}{l_{0}g_{z}(5)} + \frac{3}{l_{0}g_{z}(5)}$$

Putting it all together ... $nDCG_{p} = \frac{DCG_{p}}{IDCG_{p}}$

 $NDCG_{4} = \frac{DCG_{4}}{IDCG_{4}} = \frac{4.02}{10.80} = 0.37$