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Measuring Relevance

English Math Picture
1) A set of documents

D = {(di, qj, rij)}

di is a vector

qj is a vector

rij ∈ {0,1}

2) A set of queries

3) A binary 
assessment of either 
✅ Relevant or          
❌ Non-Relevant for 
each query and each 
document

We need 3 things in our benchmark dataset:

Documents Queries Relevance

d1 q1 r11

d1 q2 r12

d1 q3 r13

… … …

D



Relevance

10,000 total docs
40 are ✅ relevant

9,960 are ❌ not relevant

IR Black Box
the algorithm

f(q,d)

Query = 
meet me at 

midnight

Rankings
1. (some doc)
2. (another doc)
3. …
n. (a doc)

Benchmark 
Dataset

✅
❌
…

Measure of IR Algorithm Effectiveness#

The Big Picture

✅



Activity
With your group: What metrics did we 

learn about last time?



So far, our evaluation has been offline

We have mainly discussed offline evaluation, where we want to 
test a hypothesis (e.g., compare new search engine X’ to old 
search engine X)
Assumption: we have a test collection of

● docs (representative of our collection), 
● queries (that we hope are representative of what our users will 

ask), and 
● relevance judgments (can be expensive to collect and noisy)



Let’s talk about offline experiments…
Useful even in scenarios where you DO have access 
to a production system 

– e.g., internally at Google, Bing, Netflix, … You can just 
use historic data!

Good for comparing results
– e.g., I can compare my algorithm to your algorithm

Challenge: do the results generalize to the online 
scenario?



Types of Evaluation
Offline: Usually with a benchmark dataset or 
using historical interactions from a production system (e.g., at 
Google)

ex: Recall, Precision, Recall@k, Precision@k, NDCG@k

User Studies: Present search interface to a group of users 
(say 10-100), often in person or using a system like Amazon 
Mechanical Turk (can scale to 100s)

Online: Typically requires access to a production system with 
existing users (challenging for a class project!)

ex: A/B tests (e.g., to measure click through rate – aka CTR)
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A/B Testing



From this blog – it’s awesome go read it: 

https://netflixtechblog.com/what-is-an-a-b-test-b0
8cc1b57962

https://netflixtechblog.com/what-is-an-a-b-test-b08cc1b57962
https://netflixtechblog.com/what-is-an-a-b-test-b08cc1b57962




There are different ways to split! 
Can run blue algorithm for n days, then red algorithm for n days, 

then compare engagement.



There are different ways to split! 
Can run blue algorithm and red algorithm at the same time, send 
½ users to blue and ½ users to red, then compare engagement.



Activity

With your group: In what situation would 
you want to split your data the 1st way 

vs the 2nd way? 



End of Evaluation

&

Beginning of Learning to Rank!



Activity
With your group, brainstorm some 

ranking features for Google!



Let’s brainstorm some ranking features for 
other platforms!

YouTube: view, subscribers, video length, user profile 
factors (e.g., age, location), title relevance, video 
quality, recency, …

LinkedIn: popularity of job posting, # openings, skill 
match with the user, nearness, recency, salary, …

Spotify: popularity, trustworthiness, location, 
language, social network, keyword match, …



How could we make a ranking function?

f(q,d) = 
a1 * cosine(q,d) + 
a2 * BM25(q,d) + 
a3 *#views in the last day(d) + 
a4 *#views in the last week(d) + 
a5 * recency(d) + 
a6 * PageRank(d) + 
…

If f(q,d) > threshold:
✅ relevant

else:
❌ not relevant

Step 1 Step 2

These are the ranking features!

f(q,d)



Instead, let’s learn a good ranking function!

Very natural idea (especially these days)

But it took a while for ML and IR to be good friends
● Wong, S.K. et al. 1988. Linear structure in information retrieval. SIGIR.
● Fuhr, N. 1992. Probabilistic methods in information retrieval. Computer Journal.
● Gey, F. C. 1994. Inferring probability of relevance using the method of logistic regression. 

SIGIR.
● Herbrich, R. et al. 2000. Large Margin Rank Boundaries for Ordinal Regression. Advances in 

Large Margin Classifiers.

f(q,d)



Brief background: Learning Tasks

Different learning tasks are for different types of predictions!

Regression: trying to predict a real value

Binary classification: trying to predict a simple yes/no response (2 classes)

Multiclass classification: trying to predict one of a number of classes (n classes)

Ranking: trying to put a set of objects in order of relevance (so output a number)

aka outputs



Text Classification
Given:

● A document space X
● A fixed set of classes C = {c1, c2, …}
● A training set of labeled documents: 

e.g., d1→c1, d2→c1, d3→c2, …

Learn a function f that maps documents to classes f: X → C
● e.g., f(d1)=c1
● Because the learning task is classification, we’ll 

call this function a classifier!
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Training Stage 🔥
During the training stage, we 
know what the the inputs and 
the outputs are. So during this 

stage, we’re trying to make f 
really good at mapping inputs 

to outputs on DTrain. The 
Learning Algorithm is in 

charge of this. So f is 
changing during this stage.

Testing Stage ❄
During the testing stage, we 
pretend we don’t know what 

the outputs are for DTest. Then 
we plug in different inputs, 

and see if f –  So f is frozen 
(not changing) during this 

stage. – gets the outputs right 
or not (this is evaluation)! 

Documents Classes

d1 c1

d2 c1

d3 c2

… …

Documents Classes

d43 c1

… …

DTrain

DTest

Learning 
Algorithm

f: X → C
Test 

Example
d43

Predicted 
Label

c1

DTrain

✅

Evaluation

🔥
❄

❄What is changing or frozen 
in f? In this example, all 
these little coefficients!

Learning f



We can learn f different ways!

Today, we’re going to go over 2 ways:
1. Rocchio

2. kNN
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Training Stage 🔥
Learn class centroids for 
each class: calculate the 
centroid of all the training 
examples from each class

Testing Stage ❄
Assign a new example to 
the class of the nearest 
class centroid

Documents Classes

d1 c1

d2 c1

d3 c2

… …

Documents Classes

d43 c1

… …

DTrain

DTest

Learning 
Algorithm

f: X → C
Test 

Example
d43

Predicted 
Label

c1

DTrain

✅

Evaluation

🔥
❄

❄

We can learn f using

Rocchio



Rocchio Example
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Training Stage 🔥
There’s actually no training – 
f doesn’t actually learn 
anything/change at all in this 
stage! That’s ok, it still has a 
definition, so we can just 
apply that in the next stage.

Testing Stage ❄
Assign a new example to 
the majority class of the 
k-nearest training 
examples.

Documents Classes

d1 c1

d2 c1

d3 c2

… …

Documents Classes

d43 c1

… …

DTrain

DTest

Learning 
Algorithm

f: X → C
Test 

Example
d43

Predicted 
Label

c1

DTrain

✅

Evaluation

🔥
❄

❄

We can learn f using

kNN
(k Nearest Neighbors)



kNN Example



In practice: which features?

Very important to select good features to represent 
our documents

Features we know about:
● TFIDF scores of words (one feature per word)
● Pagerank, Hubs, Authorities
● Popularity, clicks, freshness, …



In practice: which model (f)?
Many, many ways to learn a good classification function 
aka classifier aka model aka f:

● Rocchio 😄
● kNN 😄
● Support Vector Machines
● Naive Bayes
● Decision Trees
● Random Forest
● Gradient-Boosted Decision Trees
● Neural Networks
● … and more! There’s, like, a LOT of algorithms for this.



There are a bunch of different models you can choose to use – how do you 
know which one to use?

Step 1: Keep part of DTrain separate as a validation set (DValid)

Step 2: Train each model (f) over DTrain and “test” over DValid

Step 3: Choose the model (f) that performed the best on DValid in Step 2

Step 4: Test that model (f)  on DTest to make sure it works well & didn’t overfit

DValid DTestDTrain 

D

In practice: which model (f)?

If we find that our model 
doesn’t work well in the end, 

we can just start over and 
make some changes to our 
process (we can change all 
these little parts as needed: 

features, models, model 
settings/ hyperparameters, 

evaluation metrics, etc.) to see 
if that helps.

d1d2d3d4d5d6d7d8d9d10d11..
.

d93d94… d155d156…

D
oc

um
en

ts
C

la
ss

es c1 c2 c1 c1 c1 c1  c1 c2 
c2c1c1...

c1  c2… c2  c1…

If the model (f) is overfit 
on the dataset, that 

means it won’t perform 
very well on real-world, 

unseen data! (We’re 
simulating this situation 
of real-world, unseen 

data with DTest). 



In practice: how to evaluate?
We need a way to evaluate 
how well we do! 
aka how good f is

Accuracy is one way, count 
up the ✅s and ❌s and 
report the percent of ✅s!
Tells us how many our 
classifier guessed 
correctly!

There are lots of ways – we 
may talk about some later 
👍



Activity
With your 

group, which 
learning task is 
the best fit for 
our benchmark 

dataset? 



Hmm… sounds like a classification situation!

Training 🔥
● Given DTrain of (query, doc → relevance) triples*

● Learn f that outputs ✅ relevant or ❌ non-relevant

Testing ❄
● Given (query, doc) from DTest, apply f(query, doc)

● Output relevance: ✅ relevant or ❌ non-relevant

* note that our input is not just a doc but both a doc and a query!
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Relevance Classification Example f(query, doc) = relevance


